

TRAINING MANUAL

Using the Segment LCD Low Power Features on the
SAM4L-EK

AN-4558

Prerequisites

• Hardware Prerequisites
• Atmel® SAM4L-EK Evaluation kit

• Software Prerequisites

• Atmel Studio 6.2
• Atmel Software Framework 3.17.0 or higher
• Latest J-Link/SAM-ICE™ Software and Documentation Pack

• Estimated completion time: 45min

Introduction

The goal of this hands-on is to:

• Describe the main features of the Segment LCD Controller (LCDCA)
• Understand how to configure and use them to maximize power efficiency

42222B−07/2014

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 2 of 30

Table of Contents

Prerequisites ...1

Introduction ...1

Icon Key Identifiers ...3

1. Training Module Architecture ...4

1.1 Atmel Studio Extension (.vsix) ... 4

1.2 Atmel Training Executable (.exe) ... 4

2. Introduction to Segment LCD Controller (LCDCA) Low Power
Features ...5

2.1 LCDCA Clocks ... 5

2.2 LCDCA Power Management ... 5

3. Assignment 1: Create and Configure Your Project6

4. Assignment 2: Segment LCD Controller Initialization 11

5. Assignment 3: ASCII Character Mapping 18

6. Assignment 4: Frame Frequency Flexibility 21

7. Assignment 5: Low Power Waveform 23

8. Assignment 6: Configure the LCDCA to Reach the Lowest Power
Consumption .. 24

9. Assignment 7: Hardware Blinking Feature 25

10. Assignment 8: Software Contrast Adjustment Control 27

11. Conclusion ... 28

12. Revision History ... 29

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 3 of 30

Icon Key Identifiers

Icons are used to identify different assignment sections and reduce complexity.
These icons are:

 Delivers contextual information about a specific topic.

 Highlights useful tips and techniques.

 Highlights objectives to be completed.

 Highlights the expected result of an assignment step.

 Indicates important information.

 Highlights actions to be executed out of the target when
necessary.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 4 of 30

1. Training Module Architecture
This training material can be retrieved through different Atmel deliveries:

• As an Atmel Studio Extension (.vsix file), which can be found on the Atmel Gallery web site
(http://gallery.atmel.com/) or using the Atmel Studio Extension manager

• As an Atmel Training Executable (.exe file) usually provided during Atmel Training sessions

Depending on the delivery type, the different resources needed to complete this training (hands-on
documentation, datasheets, application notes, software, and tools) will be found on different locations.

1.1 Atmel Studio Extension (.vsix)
Once the extension has been installed, you can open and create the different projects associated with the
training using the “New Example Project from ASF..." menu in Atmel Studio.

 The example projects installed through an extension are usually under “Atmel
Training > Atmel Corp. Extension Name”.

There are different projects which can be available depending on the extension:

• Hands-on Documentation: contains the documentation as required resources

• Hands-on Assignment: contains the initial project that may be required to start

• Hands-on Solution: contains the final application, which is a solution project for this hands-on

 Each time a reference is made to some resources in the following pages, the user
must refer to the Hands-on Documentation project folder.

1.2 Atmel Training Executable (.exe)
Depending on where the executable has been installed, you will find the following architecture which is
comprised of two main folders:

• AN-XXXX_Hands-on: contains the initial project that may be required to start and a solution

• Resources: contains required resources (datasheets, software, and tools…)

 Unless a specific location is specified, each time a reference is made to some
resources in the following pages, the user must refer to this Resources folder.

http://gallery.atmel.com/

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 5 of 30

2. Introduction to Segment LCD Controller (LCDCA) Low Power Features
A Segment LCD display is made of several segments which can be visible or invisible.

A segment has two electrodes with liquid crystal between them. These electrodes are the common terminal
(COM) and the segment terminal (SEG).

When a voltage above a threshold voltage is applied across the liquid crystal, the segment becomes visible.

Our Segment LCD controller (LCDCA) is intended for monochrome passive liquid crystal display (LCD) with
up to four Common terminals and up to 40 Segments terminals.

 The SAM4L-EK LCD has four Common and 40 Segment terminals.

2.1 LCDCA Clocks
The LCDCA peripheral has two different clocks:

• CLK_LCDCA: the LCDCA Bus Interface Clock (APB clock), managed by the Power Manager (PM)
• CLK_LCD: the LCD 32kHz clock, managed by the Backup Power Manager (BPM). This clock

allows the LCD Controller to run in the different Power Save Modes.

2.2 LCDCA Power Management
The Power Management can control the LCD display while CLK_LCDCA is disabled but stops functioning
when CLK_LCD (32kHz) is disabled.

Several features are supported to offload the CPU, reduce interrupts and reduce power consumption.

The power consumption of LCDCA itself can be minimized by:

• Using the lowest acceptable frame rate (refer to the LCD technical characteristics)
• Using the low power waveform mode (default mode)
• Configuring the lowest possible contrast value

In addition to this, other features such as ASCII Character mapping or Segment Blink functionality can be
used to reduce interrupts number and offload the CPU. This will allow making the application much more
power efficient.

 This Hands-on will describe how to configure and use these different low power
features.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 6 of 30

3. Assignment 1: Create and Configure Your Project

 Create the Hands-on Assignment project under Atmel Studio.

• Click on New Project… (or File > New > Project…):

• In New Project Window, select “C/C++ > GCC C ASF Board Project”:

• Fill-in New Project fields according to following use cases:

Atmel Training Executable Case
• Name: Hands-On Assignment
• Location: “AN-4558_SAM4L-EK_LCDCA\assignments”

(relative path in the ATMEL_TRAINING installation folder)
• Solution name: Hands-On Assignment
• Click OK

Atmel Extension Case (downloaded from Atmel Gallery or Studio Extension Manager)
• Name: Hands-On Assignment
• Location: existing Hands-on Documentation solution path
• Solution name: Hands-On Documentation
• Click OK

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 7 of 30

• In Board selection window, click on Select By Board and type SAM4L in the search field.
Then select SAM4L-EK – ATSAM4LC4C board and Click OK:

 “Hands-on Assignment” project is loaded with default settings and source files.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 8 of 30

 Add LCD Display Support using ASF Wizard.

• Click on the ASF Wizard icon or right click on the Hands-on Assignment project > ASF Wizard:

 ASF Wizard is being loaded.

• In Available Modules pane, select as ASF Extensions the latest one available

• Type “Display” in the ASF Wizard Search box

• Select the following components, add them to the Selected Modules (Add >> button):
• sam.components.display.c42364a (component)

 Installing that component will also install the LCDCA Controller driver.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 9 of 30

• Click on Apply button to copy all files.

 Once these components have been added, you can check that they have been
loaded by looking at components and drivers folders in solution explorer as shown
below:

 The “Hands-on Assignment” project with required source files and ASF components
is now ready to use.

 Power up the SAM4L-EK.

• Connect the SAM4L-EK board to the computer using the J-Link OB USB connector (J1)

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 10 of 30

 Configure the project to use the Serial Wire Debug Interface (SWD) instead of JTAG.

 By default, each Studio project is configured to connect to the target using JTAG
interface. However, the SAM4L-EK board is designed to use the Serial Wire Debug
protocol (SWD) instead of standard JTAG. Thus, the project has to be correctly
configured to use the SWD interface in order to be able to program the chip.

• From the solution explorer window, right click on the Hands-on Assignment project file and
select “Properties”

• Now, select the Tool tab, then select:
• J-Link as Selected debugger/programmer
• SWD (Serial Wire Interface) as Interface

• Save the new project properties by clicking on the save button:

 The project is now configured to use the SWD interface as debugger/programmer
interface.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 11 of 30

4. Assignment 2: Segment LCD Controller Initialization
The goal of this assignment is to implement the different functions to correctly initialize the SAM4L Segment
LCD Controller.

 SAM4L critical system initializations.

• Open main.c file. In the main function, you can see that only board_init() function is called

The board_init() function initializes the different GPIOs for the board usage.

This function relies on the configuration of conf_board.h file located in “src\config”.

 There is no conf_board.h modifications required for this hands-on.

• Add a call to sysclk_init()function at the beginning of project “main” function:

#include <asf.h>
int main (void)
{
 sysclk_init();
 board_init();
 // Insert application code here, after the board has been
initialized

The sysclk_init() function initializes the source clocks (such as OSC0, Fast RC, PLL0…) and switching
to the system clock selected by the user.

Then, depending on the new CPU frequency, it configures the best power scaling mode and sets the right
number of flash wait states.

This function relies on the configuration of conf_clock.h file located in “src\config”.

By calling the sysclk_init()function, the following configurations will be performed:

• CPU Clock Frequency (FCPU) = RCSYS = 115kHz (default reset value)
• Peripheral Bridge X (PBx) clock frequency = FCPU = 115kHz (default reset value)
• picoCache Clock is enabled
• Power Scaling Mode 0 (default value at reset) is switched to Power Scaling Mode 1
• Number of Flash Wait State = 0 (default reset value)

 There are no “conf_clock.h” modifications required for this hands-on.

 The critical system initializations have now been performed.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 12 of 30

The LCDCA Quick Start Guide can be easily accessed by clicking on ASF Explorer and selecting
sam.components.display.c42364a > LCDCA controller driver > Quick Start Guide:

 The ASF API documentation is exclusively available on the web.
For the LCDCA Quick Start Guide, the direct link for ASF 3.17.0 version is:
http://asf.atmel.com/docs/3.17.0/sam4l/html/sam_drivers_lcdca_quick_start.html

http://asf.atmel.com/docs/3.17.0/sam4l/html/sam_drivers_lcdca_quick_start.html

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 13 of 30

Here is the LCDCA Initialization Workflow extracted from the LCDCA Quick Start Guide:

 The following configuration is given as a reference example but must NOT be
coded/implemented for now.

1. Initialize LCDCA clock.

• lcdca_clk_init();

2. Set basic LCDCA configuration.

• lcdca_set_config(&lcdca_cfg);

Where lcdca_cfg is an instance of the structure “lcdca_config”, defined below (we will learn later what
are their different meaning and use):

• uint8_t port_mask Number of SEG used.

• bool x_bias External bias (false: internal gen, true: external gen).

• bool lp_wave Wave mode (false: lowpower waveform, true: standard waveform)

• uint8_t duty_type Duty type selection.

• uint8_t lcd_clkdiv Divider of the prescaled clock source.

• uint8_t lcd_pres prescaler of the clock source.

• uint8_t fc0 Frame Counter 0.

• uint8_t fc1 Frame Counter 1.

• uint8_t fc2 Frame Counter 2.

• int8_t contrast -32 <= signed contrast value <= 31.

• Bias: to operate correctly, LCD controller requires a reference level

The External BIAS bit (XBIAS) selects the source of VLCD. If XBIAS is zero, VLCD sources voltages from the
internal band gap reference. Otherwise, VLCD must be powered externally.

 The internal reference is used by the SAM4L-EK LCD.

• Duty Type: this parameter is related to the number of Common Terminals

 The SAM4L-EK LCD has four common terminals and so a ¼ duty is needed.

• Frame Counters: for several functions such as blinking modes, a frame counter is used to create a
time base. There are three independent frame counters (FC0, FC1 and FC2) which can be
associated to any function.

• Other structure parameters will be the object of specific assignments. We will come back later on
their use.

 LCD datasheet can be found in the Hands-on Documentation project (.vsix delivery)
or directly in “AN-4558_SAM4L-EK_LCDCA\assignments” folder (.exe delivery).

http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#gaea61511ed049b3428dabfd221283ef24
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga9e5d20688eb6fb39b011ea85b84a3846

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 14 of 30

3. Enable LCDCA module.

• lcdca_enable();

4. Enable frame counter timers according to your application.

• lcdca_enable_timer(LCDCA_TIMER_FC0);

• lcdca_enable_timer(LCDCA_TIMER_FC1);

• lcdca_enable_timer(LCDCA_TIMER_FC2);

5. Turn on LCD back light.

• ioport_set_pin_level(LCD_BL_GPIO, IOPORT_PIN_LEVEL_HIGH);

We will now create the LCDCA Init function by using pre-implemented code from an existing ASF Example.

 LCDCA Initialization function implementation.

• In the main.c file, create a new function “static void lcdca_init(void)”:

#include <asf.h>
static void lcdca_init(void)
{
}

int main (void)
{
 sysclk_init();
 board_init();
 // Insert application code here, after the board has been
initialized
}

• Create the following global variable above lcdca_init function:

struct lcdca_config lcdca_cfg;

static void lcdca_init(void)
{
}

 This variable is an instance of the structure called lcdca_config defined in
src/ASF/sam/drivers/lcdca/lcdca.h.

• Include conf_c42364a_lcdca.h header file:

#include <asf.h>
#include "conf_c42364a_lcdca.h"

http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga508045b770237389608b90749afc2884
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga051ba56a2b773efd9abb9cf6969c1a51
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga9bf37d10e17acc71db370f91879648ef
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga051ba56a2b773efd9abb9cf6969c1a51
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#gaca5938263390ec5b2d4cbcdafe7d7417
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga051ba56a2b773efd9abb9cf6969c1a51
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga9b39989a2c8e5fc7990109280beded56
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__ioport__group.html#ga4a68c82ba7e071467418ced856559035
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__ioport__group.html#ggaed084e0b73201e5391dd37f484041a31a94f879952a99f7f19eb1ba87c6844082

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 15 of 30

We will now get a LCDCA Initialization implementation from the existing C42364A LCD Glass module
component driver:

• Open the “c42364a_lcdca.c” file from the Solution Explorer:

• COPY the following code used for the lcdca initialization which is part of the c42364a_init()
function (do NOT copy the struct lcdca_config lcdca_cfg; line):

lcdca_clk_init();
lcdca_cfg.port_mask = C42364A_PORT_MASK;
lcdca_cfg.x_bias = CONF_C42364A_X_BIAS;
lcdca_cfg.lp_wave = true;
lcdca_cfg.duty_type = C42364A_LCD_DUTY;
lcdca_cfg.lcd_pres = CONF_C42364A_PRES;
lcdca_cfg.lcd_clkdiv = CONF_C42364A_CLKDIV;
lcdca_cfg.fc0 = CONF_C42364A_FC0;
lcdca_cfg.fc1 = CONF_C42364A_FC1;
lcdca_cfg.fc2 = CONF_C42364A_FC2;
lcdca_cfg.contrast = CONF_C42364A_CONTRAST;
lcdca_set_config(&lcdca_cfg);
lcdca_enable();
lcdca_enable_timer(LCDCA_TIMER_FC0);
lcdca_enable_timer(LCDCA_TIMER_FC1);
lcdca_enable_timer(LCDCA_TIMER_FC2);

 We could directly call the c42364a_init function but as we will update the LCDCA
initialization during the Hands-on, it’s better to create a dedicated function and make
a copy of the c42364a_init one.

• Paste this code into your “lcdca_init” function.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 16 of 30

• Add the following code in lcdca_init function just after the LCDCA initialization you just copied:

 /* Turn on LCD back light */
 ioport_set_pin_level(LCD_BL_GPIO, IOPORT_PIN_LEVEL_HIGH);

• Call the lcdca_init function in your main function:

int main (void)
{
 sysclk_init();
 board_init();
 // Insert application code here, after the board has been
initialized
 lcdca_init();
}

 Compile and Debug.

• Check that your working project is the one that will be compiled by right clicking on it from the
Solution Explorer view and click on “Set as StartUp Project”:

• Click on the “Build” button: to compile your project

• Then download the program in the internal flash of the SAM4L by clicking on the “Start Without

Debugging” or Ctrl+Alt+F5

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 17 of 30

 You should see the LCD switched on (without any characters displayed) which
proves you’ve correctly initialized the SAM4L Segment LCD Controller.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 18 of 30

5. Assignment 3: ASCII Character Mapping
LCDCA handles up to four ASCII characters tables, configured in Character Mapping Configuration register
(CMCFG).

Instead of handling each segment in display memory for a selected digit, user writes ASCII code in Character
Mapping Control Register (CMCR) to display the corresponding character.

As a consequence, Character mapping will save CPU execution time and allow a fast return to Power Save
Mode after display update. This results in an application more power efficient.

Here are the types of Digit supported by our LCD Controller:

 SAM4L-EK Custom Glass Display: this board is equipped with a 4x40 segment LCD
which has four 7-Segment with four COM terminals and seven 14-Segment with four
COM terminals.

Numeric Value

Alphanumeric Value

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 19 of 30

The aim of this assignment is to understand how to use this ASCII Character Mapping.

We will use the lcdca_write_packet()function to display ASCII characters using ASCII Character
Mapping feature. The function will write the maximum number of byte passed as argument, and will stop
writing if a NULL character is found.

void lcdca_write_packet (uint8_t lcd_tdg, uint8_t first_seg, const uint8_t
* data, size_t width, uint8_t dir)

Where parameters are:

lcd_tdg Type of digit decoder.

first_seg First SEG where the first data will be written.

data Data buffer.

width Maximum Number of data.

dir Direction (==0: Left->Right, !=0: Left<-Right).

Examples:

// Display in numeric field (7-Segment)

lcdca_write_packet(LCDCA_TDG_7SEG4COM, C42364A_FIRST_7SEG_4C, data,
C42364A_WIDTH_7SEG_4C, LCDCA_CMCFG_DREV_LEFT);

// Display in alphanumeric field (14-Segment)

lcdca_write_packet(LCDCA_TDG_14SEG4COM, C42364A_FIRST_14SEG_4C, data,
C42364A_WIDTH_14SEG_4C, LCDCA_CMCFG_DREV_LEFT);

 Display ASCII Characters on the LCD using LCDCA controller driver functions.

• Using above examples, reproduce the following display on your SAM4L-EK by implementing the
above functions in the main function

 You just need to replace the two “data” fields by ”-01-“ and ”HANDSON” characters.

• Now build the solution and program the target

 You have correctly displayed some ASCII Characters using the ASCII Character
Mapping feature of the SAM4L Segment LCD.

http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga9b06c768c950e6906132f3674768cef8
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#gafb7a766eff7ca6d1a11b2d237c0b4cea
http://asf.atmel.com/docs/3.7.2/sam4l/html/api__decoder_8c.html#a7b2f40afa6d18a0851070bdd34735c9b
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga9b06c768c950e6906132f3674768cef8
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga801207b6c6035f473a920cdf7a62fbc2
http://asf.atmel.com/docs/3.7.2/sam4l/html/api__decoder_8c.html#a7b2f40afa6d18a0851070bdd34735c9b

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 20 of 30

 OPTIONAL Task: Display ASCII Characters on the LCD using Display – C42364A
LCD functions.

It’s possible to simplify the code by directly using functions from the Display – C42364A LCD component:

Usage Example:

 // Write string to c42048a lcd numeric field.

 c42364a_write_num_packet (const uint8_t * data);

 Where data Pointer to the input string (max length is 4)

// Write string to c42048a lcd alphanumeric field.

 c42364a_write_alphanum_packet (const uint8_t * data);

 Where data Pointer to the input string (max length is 7)

• Using Usage Example above, reproduce the same display on your SAM4L-EK

• Now build the solution and program the target

 You have correctly displayed some ASCII Characters using the ASCII Character
Mapping feature of the SAM4L Segment LCD.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 21 of 30

6. Assignment 4: Frame Frequency Flexibility
The power consumption of LCDCA can be minimized by using the lowest acceptable frame rate.

A frame rate outside the LCD specification may add flickering so a trade off may be considered based on the
display quality of the application.

Minimum and maximum supported frame rates have to be checked in the following two documents:

• The SAM4L Electricals section of the product datasheet to get the minimum and maximum LCD
Frame Frequencies supported by our LCDCA Peripheral:

fframe LCD Frame Frequency FCLKLCD 31.25 512 Hz

• The LCD datasheet

 The SAM4L-EK LCD is a custom one that has been developed to fit with the
minimum and maximum values of the SAM4L LCDCA Peripheral characteristics.

The aim of this assignment is to implement the minimum and maximum frame rate configurations and check
the resulting LCD Display.

The LCD Frame Rate is computed using the following formula:

𝐹𝑟𝑎𝑚𝑒𝑅𝑎𝑡𝑒 =
𝐹(𝐶𝐿𝐾_𝐿𝐶𝐷)

𝐾 ∗ 𝑁 ∗ (1 + 𝐶𝐿𝐾𝐷𝐼𝑉) ∗ 21−𝑊𝑀𝑂𝐷

Where:

• F(CLK_DIV) is the LCD 32kHz clock
• K is factor related to the LCD Duty Cycle (example: K = 8 if Duty Cycle is ¼)
• N is the LCD Prescaler divider (8 or 16)
• CLKDIV is the Clock Division field (0 to 7 as possible values)
• WMOD is the Waveform Mode (0: low power waveform mode, 1: standard waveform mode)

 From the LCD specification which has four common terminals, a ¼ duty is needed,
so K = 8.
In the current configuration, we have configured the Low Power Waveform Mode.
This Waveform mode must not be modified during this assignment.

As a consequence, the Frame Rate Formula becomes:

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒 =
32000

8 ∗ 𝑁 ∗ (1 + 𝐶𝐿𝐾𝐷𝐼𝑉) ∗ 2

 N = 16 and CLKDIV=7 will give Frame Rate = 15.625Hz which is NOT supported.

The minimum Frame Rate will be obtained with N = 8 and CLKDIV = 7: 𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒 𝑚𝑖𝑛 = 31.25𝐻𝑧

The maximum Frame Rate will be obtained with N = 8 and CLKDIV = 0: 𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒 𝑚𝑎𝑥 = 250𝐻𝑧

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 22 of 30

 Configure the Frame Rates to 31.25Hz and 250Hz and Measure the resulting current
consumption.

Frame Rate must be updated using the two following parameters (CLKDIV, N) from lcda_cfg structure in
lcdca_init function:

• uint8_t lcd_clkdiv Divider of the prescaled clock source.

• uint8_t lcd_pres prescaler of the clock source.

Where:

lcdca_cfg.lcd_clkdiv: CLKDIV so from 0 to 7

lcdca_cfg.lcd_pres: false (N = 8) or true (N = 16)

• Make the appropriate update to fill-in the following table by configuring the different LCD Waveform
modes:

LCD Frame Rate SAM4L Current consumption [µA]

31.25Hz
(clkdiv = and pres =)

250Hz
(clkdiv = and pres =)

 Such assignments require current consumption measurements.
They have to be done using the On-Board Monitor display.

 To measure the correct current consumption, you have to close the debug session or
you will have extra current related to the debug link.

 You will notice that there is no flickering with the two tested frequencies. In an
application context where the overall power consumption must be reduced as much
as possible, the lowest frequency should be used.

 You have been able to test the minimum and maximum frame rates and measure the
impact of these two configurations on the overall current consumption of the LCDCA.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 23 of 30

7. Assignment 5: Low Power Waveform
To reduce toggle activity and hence power consumption, it is possible to configure a specific mode called Low
Power Waveform.

The low power waveform period is then twice the standard waveform period.

 The LCD must support this mode. This is the case on our SAM4L-EK.

 Check Low Power Waveform mode influence on power consumption with a Frame
Rate equal to 250Hz.

Waveform mode is configured using one parameter of the lcdca_config structure:

• bool lp_wave Wave mode (true: lowpower waveform, false: standard waveform)

As a consequence, here are the two possible configurations for that parameter:

lcdca_cfg.lp_wave = true; // Low Power Waveform Mode
lcdca_cfg.lp_wave = false; // Standard Waveform Mode

• Make the appropriate update to fill-in the following table by configuring the different LCD Waveform
modes:

Waveform Mode SAM4L Current consumption [µA]

Low Power Waveform

Standard Waveform

 You have been able to measure the impact of the Low Power Waveform mode on the
LCDCA current consumption for a given Frame Rate.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 24 of 30

8. Assignment 6: Configure the LCDCA to Reach the Lowest Power
Consumption

 Based on the different previous assignments, find the best parameter combinations
to reach the lowest LCDCA current consumption in the specified running mode (RUN
mode with RCSYS running).

 Use the lowest Frame Rate and the LCD Low Power Waveform Mode.

lcda_cfg Parameters SAM4L Current consumption [µA]

lcda_cfg.lp_wave = ?

lcda_cfg.lcd_clkdiv = ?

lcda_cfg.lcd_pres = ?

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 25 of 30

9. Assignment 7: Hardware Blinking Feature
The aim of this optional assignment is to understand how to configure the Segment LCD Hardware Blinking
feature and check its impact on the current consumption.

 Implement the Hardware Blinking Feature.

Here is the LCDCA Hardware Blinking Initialization Workflow from the online LCDCA Quick Start Guide,
section “Using Hardware Blinking”:
http://asf.atmel.com/docs/3.17.0/sam4l/html/sam_drivers_lcdca_quick_start.html

 The following configuration is given as a reference example but must NOT be
coded/implemented for now.

1. Create an instance of the Hardware Blinking structure “lcdca_blink_config” defined below:

• struct lcdca_blink_config blink_cfg;

2. Configure the structure parameters which are:

• uint8_t lcd_blink_mode Blink Mode selected (0: blink all SEG, 1: blink selected SEG)

• uint8_t lcd_blink_timer LCD Blink Timer Selected (Frame Counter 0, 1 or 2).

For several functions such as blinking modes, a frame counter is used to create a time base.

There are three independent frame counters (FC0, FC1 and FC2) which can be associated to any function.

 FC0, FC1 and FC2 have already been initialized in the lcdca_init function using
their dedicated parameters (fc0, fc1, fc2) in lcdca_config structure.

3. Set LCDCA hardware blinking configuration.

• lcdca_blink_set_config(&blink_cfg);

4. Enable Blinking Feature.

• lcdca_blink_enable();

http://asf.atmel.com/docs/3.17.0/sam4l/html/sam_drivers_lcdca_quick_start.html
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga9e5d20688eb6fb39b011ea85b84a3846
http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga508045b770237389608b90749afc2884

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 26 of 30

We will now implement the Hardware Blinking mode by blinking all LCD Segments at a specified frequency.

• Create the following global variable blink_cfg below lcdca_cfg one:
#include <asf.h>
struct lcdca_config lcdca_cfg;
struct lcdca_blink_config blink_cfg;

• In your main() function, configure the blink_cfg structure to have ALL Segments blinking and
using Frame Counter 1 (FC1):
blink_cfg.lcd_blink_timer = LCDCA_TIMER_FC1;
blink_cfg.lcd_blink_mode = LCDCA_BLINK_FULL;

• Set the hardware blinking configuration:

lcdca_blink_set_config(&blink_cfg);

• Finally, enable the Blinking feature:

lcdca_blink_enable();

• Now build the solution and program the target

 You can simply change the blinking frequency by using another Frame Counter as
FC0, FC1 and FC2 have pre-defined different values (lcdca_init function).

The following formula is used to compute the Blinking Frequency fFCx:

𝑓𝐹𝐶𝑥 =
FrameRate

(TIM. FCx × 8) + 1

Where TIM.FCx is the number of frames before rollover.

The blink frequency is defined by the number of frames (FCx in TIM register) between
each state ON/OFF. So after FCx+1 frames, the segment will change state.

 You have correctly implemented the Hardware Blinking feature.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 27 of 30

10. Assignment 8: Software Contrast Adjustment Control
Contrast is defined by the maximum value of VLCD. The higher value is, the higher contrast is.

Fine Contrast value (FCST) in CFG register is a signed value (two’s complement) which defines the maximum
voltage VLCD on segment and common terminals. New value takes effect at the beginning of next frame.

𝑉𝐿𝐶𝐷 = 3𝑉 + (𝐹𝐶𝑆𝑇 ∗ 0.016𝑉)

 Play with the Contrast adjustment control feature.

Contrast value is configured using one parameter of the lcdca_config structure:

• int8_t contrast -32 <= signed contrast value <= 31.

This parameter will be used to program the FCST field which is a 6-bit field.

As a consequence, here are the two minimum/maximum configurations for that parameter:

lcdca_cfg.contrast = -32;
lcdca_cfg.contrast = 31;

• Make the appropriate updates to test the limit configurations (in lcdca_init function)

• Minimum Contrast Value Result:

• Maximum Contrast Value Result:

 You have been able to play with the contrast adjustment control feature.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 28 of 30

11. Conclusion
In this Hands-on, you have discovered the main features of the Segment LCD Controller (LCDCA) and how to
configure and use them to make the application more power efficient.

Dedicated Low Power Waveform, Contrast Control, ASCII Character Mapping are defined to offload the CPU,
reduce interrupts, and reduce power consumption.

AN-4558 – TRAINING MANUAL: 42222B−07/2014
Page 29 of 30

12. Revision History
Doc. Rev. Date Comments

42222B 07/2014 Porting to Atmel Studio 6.2/ASF 3.17.0

42222A 12/2013 Initial document release

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg.
1-6-4 Osaki, Shinagawa-ku
Tokyo 141-0032
JAPAN
Tel: (+81)(3) 6417-0300
Fax: (+81)(3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 42222B−07/2014

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/

	1. Training Module Architecture
	1.1 Atmel Studio Extension (.vsix)
	1.2 Atmel Training Executable (.exe)

	2. Introduction to Segment LCD Controller (LCDCA) Low Power Features
	2.1 LCDCA Clocks
	2.2 LCDCA Power Management

	3. Assignment 1: Create and Configure Your Project
	Atmel Training Executable Case
	Atmel Extension Case (downloaded from Atmel Gallery or Studio Extension Manager)

	4. Assignment 2: Segment LCD Controller Initialization
	5. Assignment 3: ASCII Character Mapping
	6. Assignment 4: Frame Frequency Flexibility
	7. Assignment 5: Low Power Waveform
	8. Assignment 6: Configure the LCDCA to Reach the Lowest Power Consumption
	9. Assignment 7: Hardware Blinking Feature
	10. Assignment 8: Software Contrast Adjustment Control
	11. Conclusion
	12. Revision History

