RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC)

200B Series BX Ceramic

GENERAL DESCRIPTION

AVX, the industry leader, offers new improved ESR/ ESL performance for the 200 B Series Capacitors. This Series exhibits high volumetric efficiency with superior IR characteristics. Ceramic construction provides a rugged, hermetic package.

Typical functional applications: Bypass, Coupling and DC Blocking.

Typical circuit applications: Switching Power Supplies and High Power Broadband Coupling.

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	±15% maximum (-55°C to +125°C)			
Capacitance Range	510 pF to 0.01 μF			
Operating Temperature	From -55°C to +125°C (No derating of working voltage).			
Dissipation Factor	2.5% max. @ 1 KHz			
Insulation Resistance (IR)	5000 pF to 0.1 MFd: 10 ⁴ Megohms min. @ +25°C at rated WVDC. 10 ³ Megohms min. @ +125°C at rated WVDC.			
Dielectric Absorption	2% Typical			
Working Voltage (WVDC)	See Capacitance Values table			
Dielectric Withstanding Voltage (DWV)	Case B: 250% of rated WVDC for 5 secs.			
Aging Effects	3% maximum per decade hour.			
Piezoelectric Effects	Negligible			
Capacitance Drift	± (0.02% or 0.02 pF), whichever is greater			

FEATURES

- Case A Size (.110" x .110")
- · Lowest ESR/ESL
- · Rugged Construction
- · Extended WVDC Available
- Capacitance Range 5000 pF to 0.1 μF
- · Mid-K
- · High Reliability

PACKAGING OPTIONS

Tape & Reel

Vertical Orientation Tape & Reel

Special Packaging Available

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	MIL-STD-202, Method 107, Condition A.			
Moisture Resistance	MIL-STD-202, Method 106.			
Low Voltage Humidity	MIL-STD-202, Method 103, Condition A, with 1.5 Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours min.			
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. 200% WVDC applied.			
Termination Styles	Available in various surface mount styles. See Mechanical Configurations, page 3			
Terminal Strength	Terminations for chips and Pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor. Test per MIL-STD-202, method 211			

RF/Microwave Capacitors

RF/Microwave Multilayer Capacitors (MLC)

200B Series BX Ceramic

CAPACITANCE VALUES

CAP.	CAP.	TOL	RATED	WVDC	CAP.	CAP.	TOL.	TOL	RATED WVDC							
CODE	(pF)	TOL.	STD	EXT.*	CODE	(pF)		STD	EXT.*							
502	5000			ш	273	27,000			ш							
562	5600			AGI	333	33,000			VOLTAGE							
682	6800			VOLTAGE	393	39,000			.070							
822	8200			_ >	473	47,000			>							
103	10,000	K, M, N	50	50	100	503	50,000	K, M, N	50	100						
123	12,000	K, IVI, IN			30	100	563	56,000	K, IVI, IN	30	100					
153	15,000										9	683	68,000			e e
183	18,000															
203	20,000			EXTENDED	104	100,000			EXTENDED							
223	22,000			Û	-											

VRMS = 0.707 x WVDC

HOW TO ORDER

Please see 2nd Column Mechanical Configuration Table

The above part number refers to a 200 B Series (case size B) 8200 pF capacitor, M tolerance (±20%), 50 WVDC, with W termination (Tin / Lead, Solder Plated over Nickel Barrier), laser marking and ATC Cap-Pac® packaging.

[•] SPECIAL VALUES, TOLERANCES, HIGHER WVDC AND MATCHING AVAILABLE.

PLEASE CONSULT FACTORY.

^{*} Extended WVDC offereing meets X7R characteristics

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 200B Series BX Ceramic

MECHANICAL CONFIGURATION

AVX SERIES	AVX TERM.	CASE SIZE	OUTLINES W/T IS A		BODY DIMENSIONS INCHES (mm)						S
& CASE SIZE	CODE	& TYPE	TERMINATION SURFACE	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)		MATERIALS		
200B	w	B Solder Plate	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \hline \\ \to & \downarrow & \downarrow \\ \hline \to & \downarrow & \downarrow \\ \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max.	Tin/Lead, Solder Plated over Nickel Barrier Termination				
200B	Р	B Pellet	$\begin{array}{c c} Y \rightarrow & \downarrow & \downarrow \\ \hline & w & \hline \\ \rightarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \hline \rightarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \uparrow \rightarrow \\ \downarrow & \uparrow & \downarrow \\ \end{array}$.110 +.035010 (2.79 +0.89 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)	.015 (0.38) ±.010 (0.25) max.				
200B	Т	B Solderable Nickel Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \to \uparrow & \uparrow & \uparrow & \downarrow \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)		RoHS Compliant Tin Plated over Nickel Barrier Termination			
200B	CA	B Gold Chip	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & & w \\ \hline & \to & \downarrow & \downarrow \\ \hline & \to & \downarrow & \downarrow & \uparrow & \downarrow \\ \end{array}$.110 +.020010 (2.79 +0.51 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59)		RoHS Compliant Gold Plated over Nickel Barrier Termination			
200B	MS	B Microstrip	$\begin{array}{c c} \downarrow & \rightarrow \mid \iota_{L} \mid \leftarrow & \downarrow & \rightarrow \mid \leftarrow \\ \underline{w_{L}} & \longrightarrow & \square & \underline{w} & \square \\ \uparrow & \rightarrow \mid L \mid \leftarrow & \uparrow \rightarrow \mid \uparrow \mid \leftarrow \\ \end{array}$.120 (3.05) max.	N/A	Length (LL)	Width (WL)	Thickness (TL)	
200B	AR	B Axial Ribbon	↓ → L ← ↓ → ← WL ← W	.135 ±.015 (3.43 ±0.38)				.250 (6.35) min.	.093 ±. 005 (2.36 ± 0.13)	.004 ± .001 (.102 ± .025)	
200B	RR	B Radial Ribbon	<u>w</u> <u></u> w _t → L _L ← → L ← † → T ← †		.110 ±.015 (2.79 ±0.38)	.100 (2.54)			0.13)	.023)	
200B	RW	B Radial Wire	→ L ← → W ←	.145 ±.020		max.		.500 (12.7)		\WG., 06) dia	
200B	AW	B Axial Wire	→ L	(3.68 ±0.51)				.500 (12.7)	.016 (.406) dia. nominal		

RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 200B Series BX Ceramic

NON-MECHANICAL CONFIGURATION

AVX SERIES	AVX TERM.	MIL-PRF-	CASE SIZE	OUTLINES			LEAD AND TE MENSIONS AI		.s				
& CASE SIZE	CODE	55681	& TYPE	TERMINATION SURFACE	LENGTH (L)	WIDTH (W)	THICKNESS (T)	OVERLAP (Y)		MATERIALS			
200B	WN	Meets Require- ments	B Non-Mag Solder Plate	Y→ ← ↓	.110+.025 010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)					Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination		
200B	PN	Meets Require- ments	B Non-Mag Pellet	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \\ \to & \downarrow & \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \end{array}$.110+.035 010 (2.79 +0.89 -0.25)	.110 ±.015 (2.79 ±0.38)	.102 (2.59) max	.015 (0.38) ±.010 (0.25)	Heavy Tin/Lead, Coated over Non-Magnetic Barrier Termination				
200B	TN	Meets Require- ments	B Non-Mag Solderable Barrier	$\begin{array}{c c} Y \to & \downarrow & \downarrow \\ \hline & w & \downarrow \\ \to & \downarrow & \downarrow & \uparrow \\ \to & \downarrow & \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \end{array}$.110+.025 010 (2.79 +0.64 -0.25)	.110 ±.015 (2.79 ±0.38)			RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination		r		
200B	MN	Meets Require- ments	B Non-Mag Microstrip	$\begin{array}{c c} \downarrow & \rightarrow \mid \ ^{\downarrow} _{L} \mid \leftarrow & \downarrow & \rightarrow \mid \mid \leftarrow \\ \hline \underline{w_{L}} & & \downarrow & \downarrow & \downarrow & \downarrow \\ \uparrow & \rightarrow \mid L \mid \leftarrow & \uparrow & \uparrow \mid \uparrow \mid \leftarrow \\ \end{array}$.120 (3.05) max.		Length (LL)	Width (WL)	Thickness (TL)		
200B	AN	Meets Require- ments	B Non-Mag Axial Ribbon	$\begin{array}{c c} \downarrow & \rightarrow \mid L_{L} \mid \leftarrow & \downarrow \rightarrow \mid \leftarrow \\ \hline \frac{w_{L}}{\uparrow} & \rightarrow \mid L \mid \leftarrow & \hline \psi & \hline \downarrow & \hline \uparrow & \uparrow & \uparrow \leftarrow \\ \hline \uparrow & \rightarrow \mid L \mid \leftarrow & \hline \uparrow & \rightarrow \mid \uparrow \mid \leftarrow \\ \end{array}$.135 ±.015 (3.43 ±0.38)				.250 (6.35) (6.35) min.		.004 ± . 001 (.102 ± .025)		
200B	FN	Meets Require- ments	B Non-Mag Radial Ribbon	$\begin{array}{c c} & \downarrow & \downarrow \\ \hline \\$.110 ±.015 (2.79 ±0.38)	.100 (2.54) max.	N/A	N/A				
200B	RN	Meets Require- ments	B Non-Mag Axial Wire	→ L ← → T ← → W ←	.145 ±.020				.500 (12.7)	00 (12.7) min. #26 AWG., .016 (.406) dia. nominal			
200B	BN	Meets Require- ments	B Non-Mag RadialWire	→ L	(3.68 ±0.51)								

Additional lead styles available: Narrow Microstrip (DN), Narrow Axial Ribbon (GN) and Vertical Narrow Microstrip (HN). Other lead lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

RF/Microwave Capacitors

RF/Microwave Multilayer Capacitors (MLC)

SUGGESTED MOUNTING PAD DIMENSIONS

Dimensions are in inc							
	Pad Size A Min. B Min. C Min. D Min.						
All	Normal	.120	.050	.075	.175		
Values	High Density	.100	.030	.075	.135		

Horizontal Mount								
Pad Size A Min. B Min. C Min. D Min.								
All	Normal	.130	.050	.075	.175			
Values	High Density	.110	.030	.075	.135			

PERFORMANCE DATA

