SEMITOP® 2 # Antiparallel Thyristor Module #### **SK 25 WT** **Preliminary Data** #### **Features** - Compact Design - · One screw mounting - Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC) - · Glass passived thyristor chips - Up to 1600V reverse voltage - UL recognized, file no. E 63 532 ### **Typical Applications** - Soft starters - Light control (studios, theaters...) - Temperature control | V _{RSM}
V | V _{RRM} , V _{DRM} | I _{RMS} = 29 A A (full conduction)
(T _s = 85 °C) | |-----------------------|-------------------------------------|---| | 900 | 800 | SK 25 WT 08 | | 1300 | 1200 | SK 25 WT 12 | | 1700 | 1600 | SK 25 WT 16 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Symbol | Conditions | Values | Units | |--|-----------------------|---|------------------|-------| | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | I _{RMS} | W1C ; sin. 180° ; T _s = 100°C | 20 | Α | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | W1C ; sin. 180° ; T _s = 85°C | 29 | Α | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | I _{TSM} | T _{vi} = 25 °C ; 10 ms | 320 | Α | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | T _{vi} = 125 °C ; 10 ms | 280 | Α | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | i²t | $T_{vj} = 25 ^{\circ}\text{C} \; ; 8,310 \text{ ms}$ | 510 | A²s | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | T _{vj} = 125 °C ; 8,310 ms | 390 | A²s | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | V _T | | max. 2,45 | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $V_{T(TO)}$ | $T_{vj} = 125 ^{\circ}C$ | I - | V | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | r_{T} | T _{vj} = 125 °C | max. 20 | mΩ | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $I_{DD};I_{RD}$ | | max. 8 | mA | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | t _{gd} | 1 , | 1 | μs | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | t_{gr} | | 1 | μs | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | (dv/dt) _{cr} | | | V/µs | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | A/µs | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | t_q | | 80 | μs | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | I _H | ") | 80 / 150 | mA | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | I_{L} | ļ ·, | 150 / 300 | mA | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | V_{GT} | | min. 2 | V | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | I_{GT} | | min. 100 | mA | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | V_{GD} | T_{vj} = 125 °C; d.c. | max. 0,25 | V | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | I_{GD} | T _{vj} = 125 °C; d.c. | max. 3 | mA | | Sin 180° per thyristor 1,78 K/W Rth(j-s) cont. per W1C 0,85 K/W T _{vj} -40 +125 °C T _{stg} -40 +125 °C T _{solder} terminals, 10s 260 °C V _{isol} a. c. 50 Hz; r.m.s.; 1 s / 1 min. 3000 / 2500 V~ M _s Mounting torque to heatsink 2,5 Nm M _t a m/s² m 19 g | R _{th(i-s)} | cont. per thyristor | 1,7 | K/W | | Indicates sin 180° per W1C 0,89 K/W T _{vj} -40 +125 °C T _{stg} -40 +125 °C T _{solder} terminals, 10s 260 °C V _{isol} a. c. 50 Hz; r.m.s.; 1 s / 1 min. 3000 / 2500 V~ M _s Mounting torque to heatsink 2,5 Nm M _t a m/s² m 19 g | . 0 ., | sin 180° per thyristor | 1,78 | K/W | | Sin 180° per W1C | $R_{th(j-s)}$ | · | 0,85 | K/W | | T _{stg} | | sin 180° per W1C | l ´ | | | T _{solder} terminals, 10s 260 °C V _{isol} a. c. 50 Hz; r.m.s.; 1 s / 1 min. 3000 / 2500 V~ M _s Mounting torque to heatsink 2,5 Nm M _t a m 19 g | T_{vj} | | | | | V _{isol} a. c. 50 Hz; r.m.s.; 1 s / 1 min. 3000 / 2500 V~ M _s Mounting torque to heatsink 2,5 Nm M _t Nm Nm Nm a 19 g | T_{stg} | | -40 + 125 | | | V _{isol} a. c. 50 Hz; r.m.s.; 1 s / 1 min. 3000 / 2500 V~ M _s Mounting torque to heatsink 2,5 Nm Nm Nm nm m 19 g | T _{solder} | terminals, 10s | 260 | °C | | M _s Mounting torque to heatsink 2,5 Nm M _t Nm Nm Nm a m 19 g | V _{isol} | a. c. 50 Hz; r.m.s.; 1 s / 1 min. | 3000 / 2500 | V~ | | m m/s² g | M_s | Mounting torque to heatsink | 2,5 | Nm | | m 19 g | M_t | | | | | | а | | | m/s² | | Case SEMITOP® 2 T 37 | m | | 19 | g | | | Case | SEMITOP® 2 | T 37 | | ## **SK 25 WT** This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.