Empower’s remarkable hardware and software architecture is advanced beyond any other amplifier supplier and offers break through capabilities not seen before in EW systems. Among these capabilities are Multi-domain operations where a single unit is capable of operating in Multi-Domain scenarios as a jamming, communications and radar transmitter at optimal performance with any type of modulation.

FEATURES AND BENEFITS

- Built in EW modulation modes
 - Frequency hopping
 - QAM-xx, OFDM
 - Multi-carrier
 - Pulse, AM, FM, PSK
 - Barrage
 - Broadband noise
 - Upgradeable to future modulation standards
 - User defined pre-set jamming modes

- Unprecedented size, weight and power reduction (SWaP), superior to anything in the market at similar frequencies and power levels

- Inherently rugged design with a patented architecture that includes an internal “connector-less” RF path (an industry first).

- SW Architecture for command, control, and remote diagnostics

- Automatic Level Control (ALC) and Automatic Gain Control (AGC) available for simplifying system integration and reducing overall cost.

- Environmental (MIL-STD-810) and EMI (MIL-STD-461) Compliant

- VH F/UHF/L/S/C Band Tactical Command, Control and Communications

- Electronic Countermeasures ECM and ECCM Capability for denial and disruption of information

- Smallest and Lightest Transmitter

- Electronic VSWR and Graceful power Degradation

- Monitoring and Control via Web Browser through TCP/IP and/or front panel touchscreen display
Empower has delivered over 30,000 RCIED jammers at production rates exceeding 1000 amplifiers per month.

Empower Systems are deployed on surface, airborne & ground tactical EW platforms.

RUGGEDNESS

Higher breakdown voltages with GaN devices allow the amplifier to withstand high peak voltage waveforms and modulations such as Gaussian noise.

Reliable operation when subjected to high voltage standing wave ratio (VSWR) from the antenna which is a likely occurrence on a vehicle during combat.

GaN devices also come in smaller packages with higher power densities which enable the amplifiers to achieve smaller footprints of overall size and weight.

All hardware is subject to over-temperature, EMI and EMC, shock and vibration and all other environmental testing required.