X and Y Capacitors
Two Major Types: X2 and X1

X2 capacitors
- Agency tested with 2,500 volt surge test.
- Satisfies 99% of the applications.

X1 capacitors
- Agency tested with 4,000 volt surge test.
- Only used if the safety agency tells the designer it is necessary.
- May be used in X2 applications.
X Capacitor Comparison
Choosing between film and paper caps

Metallized Film
R46 & PHE840M

Met. Impregnated Paper
PME271M
X Capacitor Comparison
Choosing between film and paper caps

Metallized Film
R46 & PHE840M
Less expensive.

Met. Impregnated Paper
PME271M
X Capacitor Comparison
Choosing between film and paper caps

Metallized Film
R46 & PHE840M
Less expensive.

Met. Impregnated Paper
PME271M
Greater surge withstand capability.

Meets agency ____________ requirements.
X Capacitor Comparison

Choosing between film and paper caps

Metallized Film
R46 & PHE840M
Less expensive.

Meets agency ____________ requirements.

Stable.

Met. Impregnated Paper
PME271M
Greater surge withstand capability.

Stable.
X Capacitor Comparison
Choosing between film and paper caps

Metallized Film
R46 & PHE840M
Less expensive.
Meets agency requirements.
Stable.
Good self healing. Failure mode is open circuit.

Met. Impregnated Paper
PME271M
Greater surge withstand capability.
Stable.
Excellent self healing. Failure mode is open circuit.
X Capacitor Comparison

Choosing between film and paper caps

<table>
<thead>
<tr>
<th>Metallized Film</th>
<th>Met. Impregnated Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>R46 & PHE840M</td>
<td>PME271M</td>
</tr>
<tr>
<td>Less expensive.</td>
<td></td>
</tr>
<tr>
<td>Meets agency requirements.</td>
<td>Greater surge withstand capability.</td>
</tr>
<tr>
<td>Stable.</td>
<td>Stable.</td>
</tr>
<tr>
<td>Good self healing. Failure mode is open circuit.</td>
<td>Excellent self healing. Failure mode is open circuit.</td>
</tr>
<tr>
<td>Good flame resistance.</td>
<td>Excellent flame resistance.</td>
</tr>
</tbody>
</table>
X Capacitor Comparison
Choosing between film and paper caps

<table>
<thead>
<tr>
<th>Metallized Film</th>
<th>Met. Impregnated Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>R46 & PHE840M</td>
<td>PME271M</td>
</tr>
<tr>
<td>Less expensive.</td>
<td></td>
</tr>
<tr>
<td>Meets agency requirements.</td>
<td>Greater surge withstand capability.</td>
</tr>
<tr>
<td>Stable.</td>
<td>Stable.</td>
</tr>
<tr>
<td>Good self healing. Failure mode is open circuit.</td>
<td>Excellent self healing. Failure mode is open circuit.</td>
</tr>
<tr>
<td>Good flame resistance.</td>
<td>Excellent flame resistance.</td>
</tr>
<tr>
<td>Smaller, up to 10µF.</td>
<td>Available up to 0.6µF.</td>
</tr>
</tbody>
</table>
R46 & PHE840M Features
Benefits for the designer
R46 & PHE840M Features

Benefits for the designer

- Competitive prices, small sizes.
R46 & PHE840M Features

Benefits for the designer

- Competitive prices, small sizes.
- Many values in “standard” lead spacings plus new smaller alternates.
 - 1µF in 27.5mm and new 22.5.
 - 2.2 µF in 37.5mm and new 27.5.
R46 & PHE840M Features
Benefits for the designer

• Competitive prices, small sizes.
• Many values in “standard” lead spacings plus new smaller alternates.
 – 1µF in 27.5mm and new 22.5.
 – 2.2 µF in 37.5mm and new 27.5.
• Max. C-value is 10µF for high power SMPS.
 – Eliminates the need for 2 capacitors in parallel.
• Competitive prices, small sizes.
• Many values in “standard” leadspacings plus new smaller alternates.
 – 1µF in 27.5mm and new 22.5.
 – 2.2 µF in 37.5mm and new 27.5.
• Max. C-value is 10µF for high power SMPS.
 – Eliminates the need for 2 capacitors in parallel.
• PHE840M UL approved at 280VAC.
 – Eases design-ins for 277VAC applications.
R46 & PHE840M Features
Benefits for the designer

- Competitive prices, small sizes.
- Many values in “standard” lead spacings plus new smaller alternates.
 - 1µF in 27.5mm and new 22.5.
 - 2.2 µF in 37.5mm and new 27.5.
- Max. C-value is 10µF for high power SMPS.
 - Eliminates the need for 2 capacitors in parallel.
- PHE840M UL approved at 280VAC.
 - Eases design-ins for 277VAC applications.
- Low loss polypropylene design for high frequency applications. (Polyester caps can heat up too much.)
 - High frequency motor drives, aircraft power (400Hz).
A Product for Every Voltage
X caps for industrial applications

<table>
<thead>
<tr>
<th>AC voltage</th>
<th>Film</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>275/280</td>
<td>R46, PHE840M</td>
<td>PME271M</td>
</tr>
<tr>
<td>300</td>
<td>R46, PHE840E</td>
<td>PME271E</td>
</tr>
<tr>
<td>330</td>
<td>PHE841, R49</td>
<td></td>
</tr>
<tr>
<td>440/480</td>
<td>PHE844, R47</td>
<td>PME278</td>
</tr>
<tr>
<td>600 & up</td>
<td>PHE845</td>
<td>PME264</td>
</tr>
</tbody>
</table>

Use one capacitor of the correct voltage instead of two low-voltage parts in series.
Y Capacitors
Two Major Types: Y2 and Y1

Y2 capacitors
- Agency tested with 5,000 volt surge test.
- Satisfies nearly all the applications.

Y1 capacitors
- Agency tested with 8,000 volt surge test.
- Double insulation / reinforced insulation.
- Only used if the safety agency tells the designer it is necessary.

Because common Y cap C-values are small (for example 4700pF) ceramics are also offered.
IEC950 Push Test
Effect on ceramic Y capacitors

Ceramic Y Capacitor

Boxed Y Capacitor
Ceramic Y Capacitor Solutions to the Push Test Problem

Put an insulating sleeve over the capacitor. Adds to the total cost.
Ceramic Y Capacitor Solutions to the Push Test Problem

- Put an insulating sleeve over the capacitor. Adds to the total cost.
- Leave a “keepout zone” on the power supply. Creates a size penalty.
Y Capacitor Comparison

Ceramic

Metallized paper & film
Y Capacitor Comparison

Ceramic Metallized paper & film
Less expensive.
Y Capacitor Comparison

Ceramic
Less expensive.
Unstable over time and _______ Stable.

Metallized paper & film
Y Capacitor Comparison

Ceramic

Less expensive.

Unstable over time and _______ Stable.

temperature.

Pushes over (may require _______ Boxed types do not push over.
additional insulation). (Lower total cost.)
Y Capacitor Comparison

Ceramic

Less expensive.

Unstable over time and temperature.

Pushes over (may require additional insulation).

Maximum capacitance available is ~0.022µF.

Metallized paper & film

Stable.

Boxed types do not push over. (Lower total cost.)

Available up to 1.0µF. (Ideal for industrial apps.)
Y Capacitor Comparison

Ceramic

- Less expensive.
- Unstable over time and temperature.
- Pushes over (may require additional insulation).
- Maximum capacitance available is ~0.022µF.
- Failure mode tends toward short circuit.

Metallized paper & film

- Stable.
- Boxed types do not push over. (Lower total cost.)
- Available up to 1.0µF. (Ideal for industrial apps.)
- Self healing. Failure mode is open circuit.
New film Y cap PHE850
Alternative to ceramics
New film Y cap PHE850

Alternative to ceramics

- Metallized, self-healing construction.
 - Safer failure mode at near-ceramic prices.
New film Y cap PHE850
Alternative to ceramics

- Metallized, self-healing construction.
 - Safer failure mode at near-ceramic prices.
- Very wide C-value range: 0.001 – 1µF.
 - Higher values excellent for industrial applications.
New film Y cap PHE850

Alternative to ceramics

- Metallized, self-healing construction.
 - Safer failure mode at near-ceramic prices.
- Very wide C-value range: 0.001 – 1µF.
 - Higher values excellent for industrial applications.
- Small physical size.
New film Y cap PHE850
Alternative to ceramics

- Metallized, self-healing construction.
 - Safer failure mode at near-ceramic prices.
- Very wide C-value range: 0.001 – 1µF.
 - Higher values excellent for industrial applications.
- Small physical size.
- Does not push over.
 - Can lower total cost to use.
Summary

Choosing X and Y Capacitors

Y Capacitors
X Capacitors

Copyright ©2008 KEMET
Summary

Choosing X and Y Capacitors

Y Capacitors

- Use metallized paper PME271Y for commercial & industrial applications.
 - Provides excellent self-healing and flammability performance.

X Capacitors
Choosing X and Y Capacitors

Y Capacitors

- Use metallized paper PME271Y for commercial & industrial applications.
 - Provides excellent self-healing and flammability performance.

- Use metallized film (series PHE850 or R41) as an alternative to ceramics in consumer or low-cost applications.
 - Low cost like ceramics but self-healing and does not push over.

X Capacitors
Summary

Choosing X and Y Capacitors

Y Capacitors

• Use metallized paper PME271Y for commercial & industrial applications.
 – Provides excellent self-healing and flammability performance.

• Use metallized film (series PHE850 or R41) as an alternative to ceramics in consumer or low-cost applications.
 – Low cost like ceramics but self-healing and does not push over.

X Capacitors

• Use metallized film R46 or PHE840M for most applications.
Summary

Choosing X and Y Capacitors

Y Capacitors
- Use metallized paper PME271Y for commercial & industrial applications.
 - Provides excellent self-healing and flammability performance.
- Use metallized film (series PHE850 or R41) as an alternative to ceramics in consumer or low-cost applications.
 - Low cost like ceramics but self-healing and does not push over.

X Capacitors
- Use metallized film R46 or PHE840M for most applications.
- Check out higher voltage parts where applicable.
Choosing X and Y Capacitors

Y Capacitors
- Use metallized paper PME271Y for commercial & industrial applications.
 - Provides excellent self-healing and flammability performance.
- Use metallized film (series PHE850 or R41) as an alternative to ceramics in consumer or low-cost applications.
 - Low cost like ceramics but self-healing and does not push over.

X Capacitors
- Use metallized film R46 or PHE840M for most applications.
- Check out higher voltage parts where applicable.
- Use metallized paper (series PMExxx) in high-rel applications such as critical industrial and telecom infrastructure applications.