High Power Capacitors
IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the “Information”) in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KYOCERA AVX’s knowledge of typical operating conditions for such applications, but are not intended to constitute and KYOCERA AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KYOCERA AVX with reference to the use of KYOCERA AVX’s products is given without regard, and KYOCERA AVX assumes no obligation or liability for the advice given or results obtained.

Although KYOCERA AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, KYOCERA AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that KYOCERA AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does KYOCERA AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product–related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

HIGH POWER CAPACITORS

Table of Contents

FIM PRODUCTS
General Description ................................................................................. 1
FIM Ranges Overview ........................................................................... 2
Tangent of Loss Angle VS Frequency .................................................... 3
Tangent of Loss Angle VS Temperature ................................................... 4
ΔC/C VS Hot Spot Temperature ............................................................... 5
Dimensions
Handling
Assembly and Installation................................................................. 6
Marking
Safety................................................................................................ 7
Oil
Non-Toxic Composition
Capacitors Disposal

TRAFFIM PRODUCTS
1950Vdc to 6000Vdc ............................................................................... 8
Packaging Material
Standards
How To Order
Definitions .......................................................................................... 9
Characteristics
Lifetime Expectancy VS Hot Spot Temperature and Voltage
How to Chose the Right Capacitor......................................................... 10
Thermal Resistances ........................................................................... 11
Parasitic Inductance VS Size
MTBF Calculation ............................................................................. 12
General Failure Rate
Mean Time Between Failure (MTBF)
Survival Function
Failure Mode
Dimensions ...................................................................................... 13
Weight VS Size ................................................................................ 14
Ratings and Part Number Reference .................................................. 15
Calculation Form ............................................................................. 16
Lifetime Expectancy VS Hot Spot Temperature and Voltage

FILFIM PRODUCTS
6500Vdc to 56000Vdc ........................................................................... 17
Packaging Material
Standards
How to Order
General Description
Definitions ........................................................................................ 18
Characteristics
Lifetime Expectancy VS Hot Spot Temperature and Voltage
How to Chose the Right Capacitor......................................................... 19
Thermal Resistances ........................................................................... 20
Parasitic Inductance VS Size
Weight VS Size
MTBF Calculation ............................................................................. 21
General Failure Rate
Mean Time Between Failure (MTBF)
Survival Function
Failure Mode
TPC (acquired by KYOCERA AVX Corporation in 1998) is at the forefront of high performance film capacitor technology improvements for 40 years.

In 1979, we developed **CONTROLLED SELF HEALING** Technology specifically to enhance the performance of power film capacitors.

This enables the capacitor to continue to operate without catastrophic failure by insulating the weak points of the dielectric material. During operation, the capacitor behaves like a battery. It consumes capacitance via the gradual breakdown of the individual cells until a 2% decrease from the original value.

Since 1990, **FIM** Technology launching year, we continuously improve the performances to meet DC filtering power applications.

**FIM** Technology with polypropylene **Film**, vegetable oil **Impregnated** and aluminium **Metallization** combines totally safe behaviour and high energy density.

**FIM** Technology is available in TRAFIM and FILFIM ranges for DC filtering applications.

Also available in DISFIM range for energy storage and discharge applications.
# FIM RANGES OVERVIEW

## TRAFIM

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Voltage</th>
<th>Lifetime</th>
<th>Temp.</th>
<th>Current Capability</th>
<th>Inductance</th>
<th>Case Material</th>
<th>Filtering</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>110µF to 10600µF</td>
<td>1950V to 6000V</td>
<td>Up to 495J/l for 100k hours lifetime at 70°C hot spot temp</td>
<td>Maximum hot spot temperature 95°C</td>
<td>High RMS current capability</td>
<td>Low inductance</td>
<td>Stainless steel hermetic case</td>
<td>DC link or resonant filtering for traction and industrial applications</td>
<td>Available on customized design as well</td>
</tr>
</tbody>
</table>

## FILFIM

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Voltage</th>
<th>Lifetime</th>
<th>Temp.</th>
<th>Case Material</th>
<th>Filtering</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6µF to 612µF</td>
<td>6500V to 56000V</td>
<td>Up to 250J/l for 100k hours lifetime at 70°C</td>
<td>Stainless steel hermetic case</td>
<td>High voltage DC filtering for industrial and research applications</td>
<td>Available on customized design as well</td>
<td></td>
</tr>
</tbody>
</table>

## DISFIM

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Voltage</th>
<th>Lifetime</th>
<th>Temp.</th>
<th>Case Material</th>
<th>Filtering</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only available on customized design</td>
<td>Up to 40mF</td>
<td>Up to 100kV</td>
<td>Up to 2000J/l for short lifetime (shots)</td>
<td>Stainless steel hermetic case</td>
<td>Discharge applications for industrial and research applications</td>
<td>Integration in frames or cabinets available</td>
</tr>
</tbody>
</table>

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
FIM PRODUCTS
General Description

TANGENT OF LOSS ANGLE VS FREQUENCY

TANGENT OF LOSS ANGLE VS TEMPERATURE

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer by reference and should be reviewed in full before placing any order.
FIM PRODUCTS
General Description

ΔC/C VS HOT SPOT TEMPERATURE

DIMENSIONS
Dimensions and weights are indicated in the tables of values. Dimensional tolerances are:

H±3mm, W±3mm

Initially, the large faces of the capacitor may be slightly convex.
At delivery, the maximum width

(Wmax) is W + 15mm

Standard material is stainless steel. Aluminium is available for specific requirement to reduce the weight or induction effect.

HANDLING
When unpacking, make sure that no mechanical shocks, that might deform the cans or damage the terminals, occur.
The capacitors have to be handled by using the nuts HmM10 (eyebolt) or the brackets.
In no case, the electrical output terminals must be used to lift the capacitor.
The grounding wire should be kept in place until the mounting of the capacitor.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer by reference and should be reviewed in full before placing any order.
FIM PRODUCTS
General Description

ASSEMBLY AND INSTALLATION
Check the absence of excessive mechanical stresses
The mechanical stresses in assembly should remain compatible with the characteristics of the capacitor. The method of mounting should not lead to the deformation of the capacitor case.

Comply with the maximum tightening torques stipulated for the terminals.

Mechanical mounting
Vertical mounting is preferred and horizontal is acceptable. Please contact KYOCERA AVX for upside down mounting configuration.

<table>
<thead>
<tr>
<th>Preferred</th>
<th>Preferred</th>
<th>Acceptable</th>
<th>On specific request</th>
</tr>
</thead>
</table>

In order to enable air convection, it is necessary to maintain at least 40mm between the large faces of the capacitor.

Connections
They should not induce any constraint on the output terminals. Flexible connections should be used (braided in thin metal). The cross section should not be less than: \( S = 0.2 \times I_{\text{max}} \) (\( S(\text{mm}^2) \) and \( I_{\text{max}} \) (A))

The skin effect, which occurs vs frequency, must also be considered.

MARKING
The label is usually located 50mm from the top of the case and centred to the length.

Informations:
KYOCERA AVX/TPC logo
Part Number
Capacitance and tolerance
Nominal voltage
Test voltage between terminals and case
Batch and serial number
Date of manufacturing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

031417
SAFETY
The FIM technology provides excellent safety. There is no risk of explosion in case of defect throughout the life of the capacitor. This explains why there is no need to equip these capacitors with pressure switch.
Rapeseed oil is not explosive or flammable at normal conditions, therefore capacitors can be transported without being subjected to safety rules. Rapeseed oil flash point is about 317°C and the polypropylene flash point is 350°C leading to a temperature of security above 317°C.
In case of fire above this temperature, it is recommended to use powder or CO₂. The use of water is contra-indicated. The possible rejected products during fire are mainly hydrocarbons in case of non-complete combustion, H₂O, CO₂ and CO otherwise. Carrying mask is required for protection.

OIL
The only impregnant used in FIM capacitors is rapeseed oil (otherwise known as Canola oil) and then it is fully environmentally compatible.
Of all the vegetable oils, rapeseed oil has one of the best thermal stability.

NON-TOXIC COMPOSITION
Our capacitors are free of:
Arsenic, Asbestos, Beryllium, Brominated flame retardants (PBB and PBDE), Cadmium, CFC, HCFC, Cobalt, Formaldehyde, Halon, Isocyanatos, Mercury, Nickel, PCB, PCT, Polyaromatic, Hydrocarbons (PAH), Phtalates, PVC, PTFE and Thirams.
Lead is only found in soldering (for approximatively 0.3% of the capacitor weight).
Free of SF6.

CAPACITORS DISPOSAL
The disposal of the capacitors is subjected to the laws in force in each country.
In practice, today, please contact KYOCERA AVX for a list of companies who can take charge of the products to be destroyed.
TRAFIM PRODUCTS
1950Vdc to 6000Vdc

GENERAL DESCRIPTION

The TRAFIM series is specifically designed for DC filtering applications such as DC link or resonant filters for voltages up to 6000V.

Large case sizes up to 46 liters and high specific energy up to 495J/l* together with safe and reliable Controlled Self Healing Technology make this series particularly suitable for power converters in traction, drives, renewable energy and power transmission areas.

*for 100,000 hours and 70°C hot spot temperature

The Controlled Self Healing Technology is based on a high temperature grade metallized film impregnated with vegetable oil allowing operating temperature up to 95°C.

Standard designs proposed in this catalogue are covering a wide range of voltage and capacitance values.

In case of specific requirements about shape and performances, feel free to contact your local KYOCERA AVX representative.

PACKAGING MATERIAL

Not painted rectangular nonmagnetic stainless steel hermetic case

With or without mounting brackets

Grounding through a nut on the top of the case

M8/17 female terminals or M12/30 male terminals

2 or 4 waves terminals

2 or 4 terminals

STANDARDS

IEC 61071: Power electronic capacitors

IEC 61881: Railway applications, rolling stock equipment, capacitors for power electronics

IEC 61373: Railways application, rolling stock equipment, shock and vibration tests

IEC 60068-2: Environmental testing. Part 2: Tests

EN 45545: Railways applications – Fire protection on railway vehicles

Part 2: Requirements for fire behaviour of materials and components

Part 5: Fire safety requirements for electrical equipment including that of trolley buses, track guided buses and magnetic levitation vehicles

HOW TO ORDER

DK TFM 1 1 M B 1347

Series Section and Option Terminals Type Fixing Voltage Capacitance EIA code

1 = 340x117 2 Terminals 1, 2, 3 or 4 See drawings W = without B = 1950V H = 3750V

2 = 340x117 4 Terminals C = 2150V I = 4200V

3 = 340x165 2 Terminals D = 2350V J = 4700V

4 = 340x165 4 Terminals E = 2600V K = 5200V

G = 3150V M = 6000V

Fixing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer by reference and should be reviewed in full before placing any order.
## DEFINITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_n$ (μF)</td>
<td>capacitance</td>
<td>nominal value of the capacitance measured at $\theta_{amb} = 25^\circ C \pm 10^\circ C$</td>
</tr>
<tr>
<td>$U_r$ (V)</td>
<td>rated DC voltage</td>
<td>maximum operating peak voltage of either polarity (non-reversing type waveform), for which the capacitor has been designed for continuous operation</td>
</tr>
<tr>
<td>$U_w$ (V)</td>
<td>working voltage</td>
<td>value of the maximum operating recurrent voltage for a given hot spot temperature and an expected lifetime</td>
</tr>
<tr>
<td>$U_r$ (V)</td>
<td>ripple voltage</td>
<td>peak-to-peak alternating component of the unidirectional voltage</td>
</tr>
<tr>
<td>$L_s$ (nH)</td>
<td>parasitic inductance</td>
<td>capacitor series self-inductance</td>
</tr>
<tr>
<td>$R_s$ (mΩ)</td>
<td>series resistance</td>
<td>capacitor series resistance due to galvanic circuit @ amb temperature</td>
</tr>
<tr>
<td>$I_{rms\ Thermal\ 1}$ (A)</td>
<td>RMS current</td>
<td>rms current value @ 100Hz for continuous operation under natural convection generating 20°C overheating (255A$<em>{rms\ max}$ maximum for 2 connexions or terminals and 400A$</em>{rms\ max}$ maximum for 4 connexions or terminals)</td>
</tr>
<tr>
<td>$I_{rms\ Thermal\ 2}$ (A)</td>
<td>RMS current</td>
<td>rms current value @ 100Hz for continuous operation under forced air generating 20°C overheating (255A$<em>{rms\ max}$ maximum for 2 terminals and 400A$</em>{rms\ max}$ maximum for 4 terminals)</td>
</tr>
<tr>
<td>$\theta_{amb}$ (°C)</td>
<td>cooling air temperature</td>
<td>temperature of the cooling air measured at the hottest position of the capacitor, under steady-state conditions, midway between two units. NOTE If only one unit is involved, it is the temperature measured at a point approximately 0.1 m away from the capacitor container and at two-thirds of the height from its base</td>
</tr>
<tr>
<td>$\theta_{HS}$ (°C)</td>
<td>hot spot temperature</td>
<td>highest temperature obtained inside the case of the capacitor in thermal equilibrium</td>
</tr>
</tbody>
</table>

## CHARACTERISTICS

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance range $C_n$</td>
<td>110μF to 10600μF</td>
</tr>
<tr>
<td>Tolerance on $C_n$</td>
<td>±10%</td>
</tr>
<tr>
<td>Rated DC voltage $U_r$</td>
<td>1950 to 6000V</td>
</tr>
<tr>
<td>Lifetime at $U_r$ and 80°C hot-spot temperature and $\Delta C / C &lt; 2%$</td>
<td>100,000h</td>
</tr>
<tr>
<td>Parasitic inductance $L_s$</td>
<td>24nH to 149nH</td>
</tr>
<tr>
<td>Maximum rms current $I_{rms}$</td>
<td>up to 400A$_{rms\ max}$</td>
</tr>
<tr>
<td>Test voltage between terminals @ 25°C</td>
<td>1.5 x $U_r$ for 10s</td>
</tr>
<tr>
<td>Test voltage between terminals and Case @ 25°C</td>
<td>(2 x $U_r$ +1000)V$_{rms\ max}$ @ 50Hz for 10s</td>
</tr>
<tr>
<td>Dielectric Film</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>Dielectric Liquid Filling</td>
<td>Rape seed oil</td>
</tr>
<tr>
<td>Climatic Category</td>
<td>55 / 95 / 56 (IEC 60068)</td>
</tr>
<tr>
<td>Working temperature</td>
<td>-55°C / +95°C (according to the power dissipated)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-55°C / +95°C</td>
</tr>
<tr>
<td>Calorific value</td>
<td>30 MJ/kg</td>
</tr>
</tbody>
</table>
**LIFETIME EXPECTANCY VS HOT SPOT TEMPERATURE AND VOLTAGE**

![Graph showing lifetime expectancy vs hot spot temperature and voltage](image)

**HOW TO CHOOSE THE RIGHT CAPACITOR**

The capacitor lifetime depends on the working voltage and the hot spot temperature. Our caps are designed to meet 100,000 hours lifetime at rated voltage and 80°C hot spot temperature. In accordance with operating conditions, please calculate the hot spot temperature and deduce from this calculation if the obtained lifetime can suit the application.

1. From the tables, select a capacitor with required capacitance $C_n$ and voltage $U_{un}$.
   - Calculate the maximum ripple voltage allowed for the selected cap: $U_{r_{max}} = 0.2U_n$.
   - If $U_{r} > U_{r_{max}}$, select a capacitor with higher rated voltage or contact your local sales representative.

   Make sure $I_{rms}$ application < $I_{rms}$ table

   Copy out:
   - serial resistance ($R_s$): see table of values
   - thermal resistances $R_{th1}$ and $R_{th2}$ (depending on cooling conditions)

---

*The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer by reference and should be reviewed in full before placing any order.*
2. Hot spot temperature calculation

Total losses are calculated as follow: $P_t = P_j + P_d$

Joule losses: $P_j = R_s \times I_{rms}^2$

Dielectric losses: $P_d = Q \times \tan \delta_0$

- $Q$ (reactive power) = $\frac{I_{rms}^2}{C}$ for a sinusoidal waveform
- $\tan \delta_0 = 3 \times 10^{-4}$ (dielectric losses of polypropylene + oil)

Hot spot temperature will be:

$\theta_{HS} = \theta_{amb} + (P_j + P_d) \times (R_{th1} + R_{th2})$

$\theta_{HS}$ absolute maximum is 95°C

If temperature is higher than 95°C, come back to #1 and start again with another selection.

$R_{th1}$: thermal resistance between hot spot and case

$R_{th2}$: thermal resistance between case and ambient air

3. Refer to the curve and deduce the lifetime vs $U_w/U_n$ ratio

eg: rated voltage 2000V
working voltage 1900V
$\rho = 0.95 \rightarrow$ lifetime 200,000 hours @ 80°C hot spot temperature

Find a calculation form at the end of the catalog
THERMAL RESISTANCES

\( R_{th1} \, (^\circ C/W)\): Thermal resistance between hot spot and case
\( R_{th2} \, (^\circ C/W)\): Thermal resistance between case and ambient air under natural convection and forced air

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>( R_{th1} , (^\circ C/W) )</th>
<th>( R_{th2} , (^\circ C/W) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (mm)</td>
<td>Natural air cooling</td>
<td>Forced air cooling &gt;2m/s</td>
</tr>
<tr>
<td>215</td>
<td>0.23 0.29</td>
<td>0.24 0.29</td>
</tr>
<tr>
<td></td>
<td>0.29 0.17</td>
<td>0.17 0.15</td>
</tr>
<tr>
<td>290</td>
<td>0.18 0.23</td>
<td>0.26 0.23</td>
</tr>
<tr>
<td></td>
<td>0.23 0.11</td>
<td>0.11 0.09</td>
</tr>
<tr>
<td>365</td>
<td>0.14 0.19</td>
<td>0.21 0.19</td>
</tr>
<tr>
<td></td>
<td>0.19 0.07</td>
<td>0.09 0.06</td>
</tr>
<tr>
<td>440</td>
<td>0.12 0.16</td>
<td>0.18 0.16</td>
</tr>
<tr>
<td></td>
<td>0.16 0.08</td>
<td>0.08 0.07</td>
</tr>
<tr>
<td>515</td>
<td>0.14 0.17</td>
<td>0.16 0.14</td>
</tr>
<tr>
<td></td>
<td>0.17 0.07</td>
<td>0.09 0.06</td>
</tr>
<tr>
<td>590</td>
<td>0.12 0.17</td>
<td>0.14 0.12</td>
</tr>
<tr>
<td></td>
<td>0.12 0.07</td>
<td>0.07 0.06</td>
</tr>
<tr>
<td>705</td>
<td>0.12 0.09</td>
<td>0.12 0.09</td>
</tr>
<tr>
<td></td>
<td>0.09 0.05</td>
<td>0.05 0.05</td>
</tr>
<tr>
<td>815</td>
<td>0.12 0.09</td>
<td>0.09 0.09</td>
</tr>
<tr>
<td></td>
<td>0.09 0.05</td>
<td>0.05 0.05</td>
</tr>
</tbody>
</table>

For confined area, capacitor working in a closed cabinet, a thermal test under real conditions is necessary to evaluate the thermal resistance.

PARASITIC INDUCTANCE VS SIZE
Measurement @ 1MHz

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Ls (nH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (mm)</td>
<td>2 terminals type 1/2</td>
</tr>
<tr>
<td>215</td>
<td>69 73</td>
</tr>
<tr>
<td>290</td>
<td>72 78</td>
</tr>
<tr>
<td>365</td>
<td>75 82</td>
</tr>
<tr>
<td>440</td>
<td>78 87</td>
</tr>
<tr>
<td>515</td>
<td>81 91</td>
</tr>
<tr>
<td>590</td>
<td>84 96</td>
</tr>
<tr>
<td>705</td>
<td>89 103</td>
</tr>
<tr>
<td>815</td>
<td>93 109</td>
</tr>
</tbody>
</table>

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
TRAFIM PRODUCTS
1950Vdc to 6000Vdc

MTBF CALCULATION
The failure rate $\lambda_a$ depends on hot spot temperature $\theta_{HS}$ and charge ratio $\rho$.

$$\rho = \frac{U_w}{U_n}$$

$$\lambda_a = 3 \times 10^{5.738(\rho^2)} \times e^{\left(\frac{9.933 \theta_{HS} + 273}{368}\right)} \times 10^{-9} \text{ in failures/hour}$$

GENERAL FAILURE RATE
$$\lambda = \lambda_a \times \pi_Q \times \pi_B \times \pi_E \text{ failures/hour}$$

Qualification | Qualification factor $\pi_Q$
---|---
Product qualified on IEC61071 or IEC61881 and internal qualification | 1
Product qualified on IEC61071 or IEC61881 | 2
Product answering on another norm | 5
Product without qualification | 15

Environment | Environment factor $\pi_E$
---|---
On ground (good conditions) | 1
On ground (fixed materials) | 2
On ground (on board) | 4
On ship | 9
On plane | 15

Environment | Environment factor $\pi_B$
---|---
Favorable | 1
Unfavourable | 5

MEAN TIME BETWEEN FAILURE (MTBF)
$$MTBF = \frac{1}{\lambda} \text{ hours}$$

SURVIVAL FUNCTION
$$N = N_0 \times \exp(-\lambda t)$$

$N$ is the number of pieces still working after $t$ hours.

$N_0$ is the number of pieces at the origin ($t = 0$)

FAILURE MODE
Main failure mode due to KYOCERA AVX’s Controlled Self-Healing Technology is only losses of capacitance. Thanks to the Controlled Self-Healing Technology, the efficient solution to interrupt the self-healing process and prevent the avalanche effect leading to the worse sequence of events for none controlled self-healing capacitors: polypropylene molecular cracking, gas emission and potential explosion in confined box.
TRAFIM PRODUCTS
1950Vdc to 6000Vdc

DIMENSIONS

Lower brackets removed for H<500mm

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
TRAFIM PRODUCTS
1950Vdc to 6000Vdc

DIMENSIONS

Lower brackets removed for H<500mm

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

111519

Your Global Source for RF, Wireless, IoT & Power Technologies

www.richardsonrfpd.com | 800.737.6937 | 630.262.6800
TRAFIM PRODUCTS
1950Vdc to 6000Vdc

DIMENSIONS

<table>
<thead>
<tr>
<th>Terminals type</th>
<th>Creepage distance</th>
<th>Air distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and 2</td>
<td>52mm</td>
<td>30mm</td>
</tr>
<tr>
<td>3 and 4</td>
<td>84mm</td>
<td>50mm</td>
</tr>
</tbody>
</table>

WEIGHT VS SIZE

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 terminals</td>
</tr>
<tr>
<td></td>
<td>Width (mm)</td>
</tr>
<tr>
<td>215</td>
<td>14</td>
</tr>
<tr>
<td>290</td>
<td>18</td>
</tr>
<tr>
<td>365</td>
<td>21.5</td>
</tr>
<tr>
<td>440</td>
<td>25.5</td>
</tr>
<tr>
<td>515</td>
<td>30</td>
</tr>
<tr>
<td>590</td>
<td>34</td>
</tr>
<tr>
<td>705</td>
<td>40</td>
</tr>
<tr>
<td>815</td>
<td>45.5</td>
</tr>
</tbody>
</table>
### RATINGS AND PART NUMBER REFERENCE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Rs (mΩ)</th>
<th>I_{rms thermal 1} (A)</th>
<th>I_{rms thermal 2} (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKT FM1*#B1347</td>
<td>1340</td>
<td>117</td>
<td>215</td>
<td>0.66</td>
<td>185</td>
<td>220</td>
</tr>
<tr>
<td>DKT FM2*#B1347</td>
<td>1340</td>
<td>117</td>
<td>215</td>
<td>0.58</td>
<td>195</td>
<td>230</td>
</tr>
<tr>
<td>DKT FM1*#B2027</td>
<td>2020</td>
<td>117</td>
<td>290</td>
<td>0.50</td>
<td>245</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM2*#B2027</td>
<td>2020</td>
<td>117</td>
<td>290</td>
<td>0.42</td>
<td>260</td>
<td>310</td>
</tr>
<tr>
<td>DKT FM3*#B2117</td>
<td>2110</td>
<td>165</td>
<td>215</td>
<td>0.92</td>
<td>170</td>
<td>195</td>
</tr>
<tr>
<td>DKT FM4*#B2117</td>
<td>2110</td>
<td>165</td>
<td>215</td>
<td>0.83</td>
<td>180</td>
<td>205</td>
</tr>
<tr>
<td>DKT FM1*#B2707</td>
<td>2700</td>
<td>117</td>
<td>365</td>
<td>0.43</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM2*#B2707</td>
<td>2700</td>
<td>117</td>
<td>365</td>
<td>0.35</td>
<td>320</td>
<td>385</td>
</tr>
<tr>
<td>DKT FM3*#B3177</td>
<td>3170</td>
<td>165</td>
<td>290</td>
<td>0.69</td>
<td>225</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM4*#B3177</td>
<td>3170</td>
<td>165</td>
<td>290</td>
<td>0.60</td>
<td>240</td>
<td>275</td>
</tr>
<tr>
<td>DKT FM1*#B3367</td>
<td>3360</td>
<td>117</td>
<td>440</td>
<td>0.39</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM2*#B3367</td>
<td>3360</td>
<td>117</td>
<td>440</td>
<td>0.31</td>
<td>380</td>
<td>400</td>
</tr>
<tr>
<td>DKT FM1*#B4037</td>
<td>4030</td>
<td>117</td>
<td>515</td>
<td>0.37</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM2*#B4037</td>
<td>4030</td>
<td>117</td>
<td>515</td>
<td>0.29</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT FM3*#B4237</td>
<td>4230</td>
<td>165</td>
<td>365</td>
<td>0.58</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM4*#B4237</td>
<td>4230</td>
<td>165</td>
<td>365</td>
<td>0.49</td>
<td>295</td>
<td>340</td>
</tr>
<tr>
<td>DKT FM1*#B4707</td>
<td>4700</td>
<td>117</td>
<td>590</td>
<td>0.35</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM2*#B4707</td>
<td>4700</td>
<td>117</td>
<td>590</td>
<td>0.27</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT FM3*#B5297</td>
<td>5290</td>
<td>165</td>
<td>440</td>
<td>0.52</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM4*#B5297</td>
<td>5290</td>
<td>165</td>
<td>440</td>
<td>0.43</td>
<td>345</td>
<td>400</td>
</tr>
<tr>
<td>DKT FM1*#B5727</td>
<td>5720</td>
<td>117</td>
<td>705</td>
<td>0.34</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM2*#B5727</td>
<td>5720</td>
<td>117</td>
<td>705</td>
<td>0.26</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT FM3*#B6347</td>
<td>6340</td>
<td>165</td>
<td>515</td>
<td>0.48</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM4*#B6347</td>
<td>6340</td>
<td>165</td>
<td>515</td>
<td>0.39</td>
<td>390</td>
<td>400</td>
</tr>
<tr>
<td>DKT FM1*#B6737</td>
<td>6730</td>
<td>117</td>
<td>815</td>
<td>0.33</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM2*#B6737</td>
<td>6730</td>
<td>117</td>
<td>815</td>
<td>0.25</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT FM3*#B7407</td>
<td>7400</td>
<td>165</td>
<td>590</td>
<td>0.45</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM4*#B7407</td>
<td>7400</td>
<td>165</td>
<td>590</td>
<td>0.36</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT FM3*#B8987</td>
<td>8980</td>
<td>165</td>
<td>705</td>
<td>0.43</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM4*#B8987</td>
<td>8980</td>
<td>165</td>
<td>705</td>
<td>0.34</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT FM3*#B1068</td>
<td>10600</td>
<td>165</td>
<td>815</td>
<td>0.41</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT FM4*#B1068</td>
<td>10600</td>
<td>165</td>
<td>815</td>
<td>0.32</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  # Insert W (without) or M (brackets) for fixing
### RATINGS AND PART NUMBER REFERENCE

**Un = 2150Vdc**

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>$R_s$ (mΩ)</th>
<th>$I_{rms}$ thermal 1 (A)</th>
<th>$I_{rms}$ thermal 2 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTFM1*#C1067</td>
<td>1060</td>
<td>117</td>
<td>215</td>
<td>0.72</td>
<td>170</td>
<td>205</td>
</tr>
<tr>
<td>DKTFM2*#C1067</td>
<td>1060</td>
<td>117</td>
<td>215</td>
<td>0.64</td>
<td>180</td>
<td>215</td>
</tr>
<tr>
<td>DKTFM1*#C1607</td>
<td>1600</td>
<td>117</td>
<td>290</td>
<td>0.54</td>
<td>230</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#C1607</td>
<td>1600</td>
<td>117</td>
<td>290</td>
<td>0.46</td>
<td>240</td>
<td>290</td>
</tr>
<tr>
<td>DKTFM3*#C1687</td>
<td>1680</td>
<td>165</td>
<td>215</td>
<td>1.00</td>
<td>160</td>
<td>185</td>
</tr>
<tr>
<td>DKTFM4*#C1687</td>
<td>1680</td>
<td>165</td>
<td>215</td>
<td>0.91</td>
<td>165</td>
<td>195</td>
</tr>
<tr>
<td>DKTFM1*#C2147</td>
<td>2140</td>
<td>117</td>
<td>365</td>
<td>0.46</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#C2147</td>
<td>2140</td>
<td>117</td>
<td>365</td>
<td>0.38</td>
<td>300</td>
<td>360</td>
</tr>
<tr>
<td>DKTFM3*#C2527</td>
<td>2520</td>
<td>165</td>
<td>290</td>
<td>0.75</td>
<td>215</td>
<td>245</td>
</tr>
<tr>
<td>DKTFM4*#C2527</td>
<td>2520</td>
<td>165</td>
<td>290</td>
<td>0.66</td>
<td>225</td>
<td>260</td>
</tr>
<tr>
<td>DKTFM1*#C2677</td>
<td>2670</td>
<td>117</td>
<td>440</td>
<td>0.42</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#C2677</td>
<td>2670</td>
<td>117</td>
<td>440</td>
<td>0.34</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM1*#C3207</td>
<td>3200</td>
<td>117</td>
<td>515</td>
<td>0.39</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#C3207</td>
<td>3200</td>
<td>117</td>
<td>515</td>
<td>0.31</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#C3367</td>
<td>3360</td>
<td>165</td>
<td>365</td>
<td>0.62</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#C3367</td>
<td>3360</td>
<td>165</td>
<td>365</td>
<td>0.53</td>
<td>280</td>
<td>320</td>
</tr>
<tr>
<td>DKTFM1*#C3737</td>
<td>3730</td>
<td>117</td>
<td>590</td>
<td>0.37</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#C3737</td>
<td>3730</td>
<td>117</td>
<td>590</td>
<td>0.29</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#C4207</td>
<td>4200</td>
<td>165</td>
<td>440</td>
<td>0.55</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#C4207</td>
<td>4200</td>
<td>165</td>
<td>440</td>
<td>0.46</td>
<td>325</td>
<td>380</td>
</tr>
<tr>
<td>DKTFM1*#C4557</td>
<td>4550</td>
<td>117</td>
<td>705</td>
<td>0.35</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#C4557</td>
<td>4550</td>
<td>117</td>
<td>705</td>
<td>0.27</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#C5047</td>
<td>5040</td>
<td>165</td>
<td>515</td>
<td>0.51</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#C5047</td>
<td>5040</td>
<td>165</td>
<td>515</td>
<td>0.42</td>
<td>375</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM1*#C5357</td>
<td>5350</td>
<td>117</td>
<td>815</td>
<td>0.34</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#C5357</td>
<td>5350</td>
<td>117</td>
<td>815</td>
<td>0.26</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#C5887</td>
<td>5880</td>
<td>165</td>
<td>590</td>
<td>0.48</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#C5887</td>
<td>5880</td>
<td>165</td>
<td>590</td>
<td>0.39</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM1*#C7147</td>
<td>7140</td>
<td>165</td>
<td>705</td>
<td>0.45</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#C7147</td>
<td>7140</td>
<td>165</td>
<td>705</td>
<td>0.36</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#C8407</td>
<td>8400</td>
<td>165</td>
<td>815</td>
<td>0.43</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#C8407</td>
<td>8400</td>
<td>165</td>
<td>815</td>
<td>0.34</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  
# Insert W (without) or M (brackets) for fixing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer by reference and should be reviewed in full before placing any order.
## RATINGS AND PART NUMBER REFERENCE

Un = 2350Vdc

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>$R_S$ (mΩ)</th>
<th>$I_{rms}$ thermal 1 (A)</th>
<th>$I_{rms}$ thermal 2 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTFM1*#D0917</td>
<td>910</td>
<td>117</td>
<td>215</td>
<td>0.76</td>
<td>165</td>
<td>195</td>
</tr>
<tr>
<td>DKTFM2*#D0917</td>
<td>910</td>
<td>117</td>
<td>215</td>
<td>0.68</td>
<td>170</td>
<td>205</td>
</tr>
<tr>
<td>DKTFM1*#D1367</td>
<td>1360</td>
<td>117</td>
<td>290</td>
<td>0.57</td>
<td>220</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#D1367</td>
<td>1360</td>
<td>117</td>
<td>290</td>
<td>0.49</td>
<td>230</td>
<td>275</td>
</tr>
<tr>
<td>DKTFM3*#D1427</td>
<td>1420</td>
<td>165</td>
<td>215</td>
<td>1.08</td>
<td>155</td>
<td>175</td>
</tr>
<tr>
<td>DKTFM4*#D1427</td>
<td>1420</td>
<td>165</td>
<td>215</td>
<td>0.99</td>
<td>160</td>
<td>185</td>
</tr>
<tr>
<td>DKTFM1*#D1827</td>
<td>1820</td>
<td>117</td>
<td>365</td>
<td>0.48</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#D1827</td>
<td>1820</td>
<td>117</td>
<td>365</td>
<td>0.40</td>
<td>285</td>
<td>345</td>
</tr>
<tr>
<td>DKTFM3*#D2147</td>
<td>2140</td>
<td>165</td>
<td>290</td>
<td>0.79</td>
<td>205</td>
<td>235</td>
</tr>
<tr>
<td>DKTFM4*#D2147</td>
<td>2140</td>
<td>165</td>
<td>290</td>
<td>0.70</td>
<td>215</td>
<td>250</td>
</tr>
<tr>
<td>DKTFM1*#D2277</td>
<td>2270</td>
<td>117</td>
<td>440</td>
<td>0.43</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#D2277</td>
<td>2270</td>
<td>117</td>
<td>440</td>
<td>0.35</td>
<td>340</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM1*#D2727</td>
<td>2720</td>
<td>117</td>
<td>515</td>
<td>0.40</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#D2727</td>
<td>2720</td>
<td>117</td>
<td>515</td>
<td>0.32</td>
<td>390</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#D2857</td>
<td>2850</td>
<td>165</td>
<td>365</td>
<td>0.66</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#D2857</td>
<td>2850</td>
<td>165</td>
<td>365</td>
<td>0.57</td>
<td>265</td>
<td>310</td>
</tr>
<tr>
<td>DKTFM1*#D3177</td>
<td>3170</td>
<td>117</td>
<td>590</td>
<td>0.38</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#D3177</td>
<td>3170</td>
<td>117</td>
<td>590</td>
<td>0.30</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#D3577</td>
<td>3570</td>
<td>165</td>
<td>440</td>
<td>0.58</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#D3577</td>
<td>3570</td>
<td>165</td>
<td>440</td>
<td>0.49</td>
<td>315</td>
<td>360</td>
</tr>
<tr>
<td>DKTFM1*#D3857</td>
<td>3850</td>
<td>117</td>
<td>705</td>
<td>0.36</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#D3857</td>
<td>3850</td>
<td>117</td>
<td>705</td>
<td>0.28</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#D4287</td>
<td>4280</td>
<td>165</td>
<td>515</td>
<td>0.53</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#D4287</td>
<td>4280</td>
<td>165</td>
<td>515</td>
<td>0.44</td>
<td>360</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM1*#D4537</td>
<td>4530</td>
<td>117</td>
<td>815</td>
<td>0.35</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#D4537</td>
<td>4530</td>
<td>117</td>
<td>815</td>
<td>0.27</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#D5007</td>
<td>5000</td>
<td>165</td>
<td>590</td>
<td>0.50</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#D5007</td>
<td>5000</td>
<td>165</td>
<td>590</td>
<td>0.41</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#D6077</td>
<td>6070</td>
<td>165</td>
<td>705</td>
<td>0.47</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#D6077</td>
<td>6070</td>
<td>165</td>
<td>705</td>
<td>0.37</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#D7147</td>
<td>7140</td>
<td>165</td>
<td>815</td>
<td>0.45</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#D7147</td>
<td>7140</td>
<td>165</td>
<td>815</td>
<td>0.35</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  # Insert W (without) or M (brackets) for fixing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
## TRAFIM PRODUCTS

1950Vdc to 6000Vdc

### RATINGS AND PART NUMBER REFERENCE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>$R_S$ (mΩ)</th>
<th>$I_{\text{rms thermal 1}}$ (A)</th>
<th>$I_{\text{rms thermal 2}}$ (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKT$\text{FM1}$$^*#\text{E7356}$</td>
<td>735</td>
<td>117</td>
<td>215</td>
<td>0.82</td>
<td>150</td>
<td>185</td>
</tr>
<tr>
<td>DKT$\text{FM2}$$^*#\text{E7356}$</td>
<td>735</td>
<td>117</td>
<td>215</td>
<td>0.74</td>
<td>155</td>
<td>190</td>
</tr>
<tr>
<td>DKT$\text{FM1}$$^*#\text{E1107}$</td>
<td>1100</td>
<td>117</td>
<td>290</td>
<td>0.62</td>
<td>205</td>
<td>245</td>
</tr>
<tr>
<td>DKT$\text{FM2}$$^*#\text{E1107}$</td>
<td>1100</td>
<td>117</td>
<td>290</td>
<td>0.54</td>
<td>215</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM3}$$^*#\text{E1157}$</td>
<td>1150</td>
<td>165</td>
<td>215</td>
<td>1.17</td>
<td>145</td>
<td>165</td>
</tr>
<tr>
<td>DKT$\text{FM4}$$^*#\text{E1157}$</td>
<td>1150</td>
<td>165</td>
<td>215</td>
<td>1.08</td>
<td>150</td>
<td>170</td>
</tr>
<tr>
<td>DKT$\text{FM1}$$^*#\text{E1477}$</td>
<td>1470</td>
<td>117</td>
<td>365</td>
<td>0.52</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM2}$$^*#\text{E1477}$</td>
<td>1470</td>
<td>117</td>
<td>365</td>
<td>0.44</td>
<td>270</td>
<td>320</td>
</tr>
<tr>
<td>DKT$\text{FM3}$$^*#\text{E1737}$</td>
<td>1730</td>
<td>165</td>
<td>290</td>
<td>0.86</td>
<td>195</td>
<td>225</td>
</tr>
<tr>
<td>DKT$\text{FM4}$$^*#\text{E1737}$</td>
<td>1730</td>
<td>165</td>
<td>290</td>
<td>0.77</td>
<td>200</td>
<td>235</td>
</tr>
<tr>
<td>DKT$\text{FM1}$$^*#\text{E1847}$</td>
<td>1840</td>
<td>117</td>
<td>440</td>
<td>0.46</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM2}$$^*#\text{E1847}$</td>
<td>1840</td>
<td>117</td>
<td>440</td>
<td>0.38</td>
<td>320</td>
<td>380</td>
</tr>
<tr>
<td>DKT$\text{FM1}$$^*#\text{E2207}$</td>
<td>2200</td>
<td>117</td>
<td>515</td>
<td>0.42</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM2}$$^*#\text{E2207}$</td>
<td>2200</td>
<td>117</td>
<td>515</td>
<td>0.34</td>
<td>365</td>
<td>400</td>
</tr>
<tr>
<td>DKT$\text{FM3}$$^*#\text{E2307}$</td>
<td>2300</td>
<td>165</td>
<td>365</td>
<td>0.71</td>
<td>240</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM4}$$^*#\text{E2307}$</td>
<td>2300</td>
<td>165</td>
<td>365</td>
<td>0.62</td>
<td>250</td>
<td>290</td>
</tr>
<tr>
<td>DKT$\text{FM1}$$^*#\text{E2577}$</td>
<td>2570</td>
<td>117</td>
<td>590</td>
<td>0.40</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM2}$$^*#\text{E2577}$</td>
<td>2570</td>
<td>117</td>
<td>590</td>
<td>0.32</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT$\text{FM3}$$^*#\text{E2877}$</td>
<td>2870</td>
<td>165</td>
<td>440</td>
<td>0.62</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM4}$$^*#\text{E2877}$</td>
<td>2870</td>
<td>165</td>
<td>440</td>
<td>0.53</td>
<td>300</td>
<td>345</td>
</tr>
<tr>
<td>DKT$\text{FM1}$$^*#\text{E3127}$</td>
<td>3120</td>
<td>117</td>
<td>705</td>
<td>0.38</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM2}$$^*#\text{E3127}$</td>
<td>3120</td>
<td>117</td>
<td>705</td>
<td>0.30</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT$\text{FM3}$$^*#\text{E3457}$</td>
<td>3450</td>
<td>165</td>
<td>515</td>
<td>0.57</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM4}$$^*#\text{E3457}$</td>
<td>3450</td>
<td>165</td>
<td>515</td>
<td>0.47</td>
<td>340</td>
<td>395</td>
</tr>
<tr>
<td>DKT$\text{FM1}$$^*#\text{E3687}$</td>
<td>3680</td>
<td>117</td>
<td>815</td>
<td>0.36</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM2}$$^*#\text{E3687}$</td>
<td>3680</td>
<td>117</td>
<td>815</td>
<td>0.28</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT$\text{FM3}$$^*#\text{E4027}$</td>
<td>4020</td>
<td>165</td>
<td>590</td>
<td>0.53</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM4}$$^*#\text{E4027}$</td>
<td>4020</td>
<td>165</td>
<td>590</td>
<td>0.44</td>
<td>380</td>
<td>400</td>
</tr>
<tr>
<td>DKT$\text{FM3}$$^*#\text{E4907}$</td>
<td>4900</td>
<td>165</td>
<td>705</td>
<td>0.49</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM4}$$^*#\text{E4907}$</td>
<td>4900</td>
<td>165</td>
<td>705</td>
<td>0.40</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKT$\text{FM3}$$^*#\text{E5737}$</td>
<td>5730</td>
<td>165</td>
<td>815</td>
<td>0.47</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKT$\text{FM4}$$^*#\text{E5737}$</td>
<td>5730</td>
<td>165</td>
<td>815</td>
<td>0.38</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  
# Insert W (without) or M (brackets) for fixing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer by reference and should be reviewed in full before placing any order.

— HIGH POWER CAPACITORS —
### TRAFIM PRODUCTS

**1950Vdc to 6000Vdc**

#### RATINGS AND PART NUMBER REFERENCE

Un = 2900Vdc

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Rs (mΩ)</th>
<th>$I_{thermal 1}$ (A)</th>
<th>$I_{thermal 2}$ (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTFM1*#F0617</td>
<td>610</td>
<td>117</td>
<td>215</td>
<td>0.89</td>
<td>140</td>
<td>170</td>
</tr>
<tr>
<td>DKTFM2*#F0617</td>
<td>610</td>
<td>117</td>
<td>215</td>
<td>0.81</td>
<td>145</td>
<td>175</td>
</tr>
<tr>
<td>DKTFM3*#F0917</td>
<td>910</td>
<td>117</td>
<td>290</td>
<td>0.66</td>
<td>195</td>
<td>235</td>
</tr>
<tr>
<td>DKTFM2*#F0917</td>
<td>910</td>
<td>117</td>
<td>290</td>
<td>0.58</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>DKTFM3*#F9556</td>
<td>955</td>
<td>165</td>
<td>215</td>
<td>1.27</td>
<td>135</td>
<td>160</td>
</tr>
<tr>
<td>DKTFM4*#F9556</td>
<td>955</td>
<td>165</td>
<td>215</td>
<td>1.17</td>
<td>140</td>
<td>165</td>
</tr>
<tr>
<td>DKTFM1*#F1217</td>
<td>1210</td>
<td>117</td>
<td>365</td>
<td>0.55</td>
<td>240</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#F1217</td>
<td>1210</td>
<td>117</td>
<td>365</td>
<td>0.47</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>DKTFM3*#F1437</td>
<td>1430</td>
<td>165</td>
<td>290</td>
<td>0.92</td>
<td>185</td>
<td>215</td>
</tr>
<tr>
<td>DKTFM4*#F1437</td>
<td>1430</td>
<td>165</td>
<td>290</td>
<td>0.83</td>
<td>190</td>
<td>220</td>
</tr>
<tr>
<td>DKTFM1*#F1527</td>
<td>1520</td>
<td>117</td>
<td>440</td>
<td>0.49</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#F1527</td>
<td>1520</td>
<td>117</td>
<td>440</td>
<td>0.41</td>
<td>300</td>
<td>360</td>
</tr>
<tr>
<td>DKTFM1*#F1827</td>
<td>1820</td>
<td>117</td>
<td>515</td>
<td>0.45</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#F1827</td>
<td>1820</td>
<td>117</td>
<td>515</td>
<td>0.37</td>
<td>345</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#F1917</td>
<td>1910</td>
<td>165</td>
<td>365</td>
<td>0.75</td>
<td>230</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#F1917</td>
<td>1910</td>
<td>165</td>
<td>365</td>
<td>0.66</td>
<td>240</td>
<td>275</td>
</tr>
<tr>
<td>DKTFM1*#F2127</td>
<td>2120</td>
<td>117</td>
<td>590</td>
<td>0.42</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#F2127</td>
<td>2120</td>
<td>117</td>
<td>590</td>
<td>0.34</td>
<td>390</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#F2387</td>
<td>2380</td>
<td>165</td>
<td>440</td>
<td>0.66</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#F2387</td>
<td>2380</td>
<td>165</td>
<td>440</td>
<td>0.57</td>
<td>285</td>
<td>330</td>
</tr>
<tr>
<td>DKTFM1*#F2587</td>
<td>2580</td>
<td>117</td>
<td>705</td>
<td>0.39</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#F2587</td>
<td>2580</td>
<td>117</td>
<td>705</td>
<td>0.31</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#F2867</td>
<td>2860</td>
<td>165</td>
<td>515</td>
<td>0.60</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#F2867</td>
<td>2860</td>
<td>165</td>
<td>515</td>
<td>0.50</td>
<td>325</td>
<td>375</td>
</tr>
<tr>
<td>DKTFM1*#F3047</td>
<td>3040</td>
<td>117</td>
<td>815</td>
<td>0.38</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#F3047</td>
<td>3040</td>
<td>117</td>
<td>815</td>
<td>0.30</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#F3347</td>
<td>3340</td>
<td>165</td>
<td>590</td>
<td>0.55</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#F3347</td>
<td>3340</td>
<td>165</td>
<td>590</td>
<td>0.46</td>
<td>365</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#F4067</td>
<td>4060</td>
<td>165</td>
<td>705</td>
<td>0.51</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#F4067</td>
<td>4060</td>
<td>165</td>
<td>705</td>
<td>0.42</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#F4777</td>
<td>4770</td>
<td>165</td>
<td>815</td>
<td>0.49</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#F4777</td>
<td>4770</td>
<td>165</td>
<td>815</td>
<td>0.39</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)

# Insert W (without) or M (brackets) for fixing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

---

RichardsonRFPD
An Arrow Company

Your Global Source for RF, Wireless, IoT & Power Technologies

www.richardsonrfpd.com | 800.737.6937 | 630.262.6800

3/2022
## RATINGS AND PART NUMBER REFERENCE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Rs (mΩ)</th>
<th>I rms thermal 1 (A)</th>
<th>I rms thermal 2 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTDM1*G0517</td>
<td>510</td>
<td>117</td>
<td>215</td>
<td>0.95</td>
<td>135</td>
<td>160</td>
</tr>
<tr>
<td>DKTDM2*G0517</td>
<td>510</td>
<td>117</td>
<td>215</td>
<td>0.87</td>
<td>140</td>
<td>165</td>
</tr>
<tr>
<td>DKTDM1*G7656</td>
<td>765</td>
<td>117</td>
<td>290</td>
<td>0.70</td>
<td>185</td>
<td>220</td>
</tr>
<tr>
<td>DKTDM2*G7656</td>
<td>765</td>
<td>117</td>
<td>290</td>
<td>0.62</td>
<td>190</td>
<td>225</td>
</tr>
<tr>
<td>DKTDM3*G0807</td>
<td>800</td>
<td>165</td>
<td>215</td>
<td>1.36</td>
<td>130</td>
<td>150</td>
</tr>
<tr>
<td>DKTDM4*G0807</td>
<td>800</td>
<td>165</td>
<td>215</td>
<td>1.27</td>
<td>135</td>
<td>155</td>
</tr>
<tr>
<td>DKTDM1*G1027</td>
<td>1020</td>
<td>117</td>
<td>365</td>
<td>0.58</td>
<td>225</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM2*G1027</td>
<td>1020</td>
<td>117</td>
<td>365</td>
<td>0.50</td>
<td>235</td>
<td>280</td>
</tr>
<tr>
<td>DKTDM3*G1207</td>
<td>1200</td>
<td>165</td>
<td>290</td>
<td>0.99</td>
<td>175</td>
<td>200</td>
</tr>
<tr>
<td>DKTDM4*G1207</td>
<td>1200</td>
<td>165</td>
<td>290</td>
<td>0.90</td>
<td>180</td>
<td>210</td>
</tr>
<tr>
<td>DKTDM1*G1277</td>
<td>1270</td>
<td>117</td>
<td>440</td>
<td>0.51</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM2*G1277</td>
<td>1270</td>
<td>117</td>
<td>440</td>
<td>0.43</td>
<td>280</td>
<td>335</td>
</tr>
<tr>
<td>DKTDM1*G1537</td>
<td>1530</td>
<td>117</td>
<td>515</td>
<td>0.47</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM2*G1537</td>
<td>1530</td>
<td>117</td>
<td>515</td>
<td>0.39</td>
<td>320</td>
<td>385</td>
</tr>
<tr>
<td>DKTDM3*G1607</td>
<td>1600</td>
<td>165</td>
<td>365</td>
<td>0.80</td>
<td>215</td>
<td>250</td>
</tr>
<tr>
<td>DKTDM4*G1607</td>
<td>1600</td>
<td>165</td>
<td>365</td>
<td>0.71</td>
<td>225</td>
<td>260</td>
</tr>
<tr>
<td>DKTDM1*G1787</td>
<td>1780</td>
<td>117</td>
<td>590</td>
<td>0.44</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM2*G1787</td>
<td>1780</td>
<td>117</td>
<td>590</td>
<td>0.36</td>
<td>365</td>
<td>400</td>
</tr>
<tr>
<td>DKTDM3*G2007</td>
<td>2000</td>
<td>165</td>
<td>440</td>
<td>0.70</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM4*G2007</td>
<td>2000</td>
<td>165</td>
<td>440</td>
<td>0.61</td>
<td>270</td>
<td>310</td>
</tr>
<tr>
<td>DKTDM1*G2177</td>
<td>2170</td>
<td>117</td>
<td>705</td>
<td>0.41</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM2*G2177</td>
<td>2170</td>
<td>117</td>
<td>705</td>
<td>0.33</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTDM3*G2407</td>
<td>2400</td>
<td>165</td>
<td>515</td>
<td>0.63</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM4*G2407</td>
<td>2400</td>
<td>165</td>
<td>515</td>
<td>0.54</td>
<td>310</td>
<td>360</td>
</tr>
<tr>
<td>DKTDM1*G2557</td>
<td>2550</td>
<td>117</td>
<td>815</td>
<td>0.39</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM2*G2557</td>
<td>2550</td>
<td>117</td>
<td>815</td>
<td>0.31</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTDM3*G2807</td>
<td>2800</td>
<td>165</td>
<td>590</td>
<td>0.58</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM4*G2807</td>
<td>2800</td>
<td>165</td>
<td>590</td>
<td>0.49</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>DKTDM3*G3407</td>
<td>3400</td>
<td>165</td>
<td>705</td>
<td>0.54</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM4*G3407</td>
<td>3400</td>
<td>165</td>
<td>705</td>
<td>0.44</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTDM3*G4007</td>
<td>4000</td>
<td>165</td>
<td>815</td>
<td>0.51</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTDM4*G4007</td>
<td>4000</td>
<td>165</td>
<td>815</td>
<td>0.41</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  
# Insert W (without) or M (brackets) for fixing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

111519

TRAFIM PRODUCTS
1950Vdc to 6000Vdc

Your Global Source for RF, Wireless, IoT & Power Technologies
www.richardsonrfpd.com | 800.737.6937 | 630.262.6800

3/2022
### RATINGS AND PART NUMBER REFERENCE

**Un = 3750Vdc**

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (µF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>( R_s ) (mΩ)</th>
<th>( I_{rms \ thermal} ) thermal 1 (A)</th>
<th>( I_{rms \ thermal} ) thermal 2 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTFM1*#H0337</td>
<td>330</td>
<td>117</td>
<td>215</td>
<td>1.14</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>DKTFM2*#H0337</td>
<td>330</td>
<td>117</td>
<td>215</td>
<td>1.06</td>
<td>115</td>
<td>135</td>
</tr>
<tr>
<td>DKTFM1*#H4956</td>
<td>495</td>
<td>117</td>
<td>290</td>
<td>0.83</td>
<td>155</td>
<td>185</td>
</tr>
<tr>
<td>DKTFM2*#H4956</td>
<td>495</td>
<td>117</td>
<td>290</td>
<td>0.75</td>
<td>160</td>
<td>190</td>
</tr>
<tr>
<td>DKTFM3*#H0537</td>
<td>530</td>
<td>165</td>
<td>215</td>
<td>1.63</td>
<td>115</td>
<td>130</td>
</tr>
<tr>
<td>DKTFM4*#H0537</td>
<td>530</td>
<td>165</td>
<td>215</td>
<td>1.54</td>
<td>120</td>
<td>135</td>
</tr>
<tr>
<td>DKTFM1*#H0667</td>
<td>660</td>
<td>117</td>
<td>365</td>
<td>0.67</td>
<td>195</td>
<td>230</td>
</tr>
<tr>
<td>DKTFM2*#H0667</td>
<td>660</td>
<td>117</td>
<td>365</td>
<td>0.59</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>DKTFM3*#H7956</td>
<td>795</td>
<td>165</td>
<td>290</td>
<td>1.16</td>
<td>155</td>
<td>180</td>
</tr>
<tr>
<td>DKTFM4*#H7956</td>
<td>795</td>
<td>165</td>
<td>290</td>
<td>1.07</td>
<td>160</td>
<td>185</td>
</tr>
<tr>
<td>DKTFM1*#H8256</td>
<td>825</td>
<td>117</td>
<td>440</td>
<td>0.59</td>
<td>230</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#H8256</td>
<td>825</td>
<td>117</td>
<td>440</td>
<td>0.51</td>
<td>240</td>
<td>290</td>
</tr>
<tr>
<td>DKTFM1*#H9856</td>
<td>985</td>
<td>117</td>
<td>515</td>
<td>0.53</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#H9856</td>
<td>985</td>
<td>117</td>
<td>515</td>
<td>0.45</td>
<td>280</td>
<td>335</td>
</tr>
<tr>
<td>DKTFM3*#H1067</td>
<td>1060</td>
<td>165</td>
<td>365</td>
<td>0.94</td>
<td>195</td>
<td>225</td>
</tr>
<tr>
<td>DKTFM4*#H1067</td>
<td>1060</td>
<td>165</td>
<td>365</td>
<td>0.84</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>DKTFM1*#H1157</td>
<td>1150</td>
<td>117</td>
<td>590</td>
<td>0.49</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#H1157</td>
<td>1150</td>
<td>117</td>
<td>590</td>
<td>0.41</td>
<td>315</td>
<td>380</td>
</tr>
<tr>
<td>DKTFM3*#H1327</td>
<td>1320</td>
<td>165</td>
<td>440</td>
<td>0.80</td>
<td>230</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#H1327</td>
<td>1320</td>
<td>165</td>
<td>440</td>
<td>0.71</td>
<td>240</td>
<td>275</td>
</tr>
<tr>
<td>DKTFM1*#H1407</td>
<td>1400</td>
<td>117</td>
<td>705</td>
<td>0.45</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#H1407</td>
<td>1400</td>
<td>117</td>
<td>705</td>
<td>0.37</td>
<td>370</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#H1597</td>
<td>1590</td>
<td>165</td>
<td>515</td>
<td>0.72</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#H1597</td>
<td>1590</td>
<td>165</td>
<td>515</td>
<td>0.63</td>
<td>275</td>
<td>320</td>
</tr>
<tr>
<td>DKTFM1*#H1657</td>
<td>1650</td>
<td>117</td>
<td>815</td>
<td>0.43</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#H1657</td>
<td>1650</td>
<td>117</td>
<td>815</td>
<td>0.35</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#H1857</td>
<td>1850</td>
<td>165</td>
<td>590</td>
<td>0.66</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#H1857</td>
<td>1850</td>
<td>165</td>
<td>590</td>
<td>0.57</td>
<td>310</td>
<td>360</td>
</tr>
<tr>
<td>DKTFM3*#H2257</td>
<td>2250</td>
<td>165</td>
<td>705</td>
<td>0.60</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#H2257</td>
<td>2250</td>
<td>165</td>
<td>705</td>
<td>0.51</td>
<td>360</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#H2657</td>
<td>2650</td>
<td>165</td>
<td>815</td>
<td>0.56</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#H2657</td>
<td>2650</td>
<td>165</td>
<td>815</td>
<td>0.47</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  # Insert W (without) or M (brackets) for fixing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at [www.avx.com/disclaimer/](http://www.avx.com/disclaimer/) by reference and should be reviewed in full before placing any order.

---

**HIGH POWER CAPACITORS**

RichardsonRFPD
An Arrow Company

Your Global Source for RF, Wireless, IoT & Power Technologies

www.richardsonrfpd.com | 800.737.6937 | 630.262.6800

3/2022
## RATINGS AND PART NUMBER REFERENCE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Rs (mΩ)</th>
<th>Irm thermal 1 (A)</th>
<th>Irm thermal 2 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTFM1*#I0267</td>
<td>260</td>
<td>117</td>
<td>215</td>
<td>1.26</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>DKTFM2*#I0267</td>
<td>260</td>
<td>117</td>
<td>215</td>
<td>1.18</td>
<td>105</td>
<td>125</td>
</tr>
<tr>
<td>DKTFM1*#I0397</td>
<td>390</td>
<td>117</td>
<td>290</td>
<td>0.91</td>
<td>140</td>
<td>170</td>
</tr>
<tr>
<td>DKTFM2*#I0397</td>
<td>390</td>
<td>117</td>
<td>290</td>
<td>0.83</td>
<td>145</td>
<td>175</td>
</tr>
<tr>
<td>DKTFM3*#I0427</td>
<td>420</td>
<td>165</td>
<td>215</td>
<td>1.80</td>
<td>105</td>
<td>120</td>
</tr>
<tr>
<td>DKTFM4*#I0427</td>
<td>420</td>
<td>165</td>
<td>215</td>
<td>1.71</td>
<td>110</td>
<td>125</td>
</tr>
<tr>
<td>DKTFM1*#I0527</td>
<td>520</td>
<td>117</td>
<td>365</td>
<td>0.73</td>
<td>180</td>
<td>215</td>
</tr>
<tr>
<td>DKTFM2*#I0527</td>
<td>520</td>
<td>117</td>
<td>365</td>
<td>0.65</td>
<td>185</td>
<td>220</td>
</tr>
<tr>
<td>DKTFM3*#I0637</td>
<td>630</td>
<td>165</td>
<td>290</td>
<td>1.28</td>
<td>140</td>
<td>165</td>
</tr>
<tr>
<td>DKTFM4*#I0637</td>
<td>630</td>
<td>165</td>
<td>290</td>
<td>1.19</td>
<td>145</td>
<td>170</td>
</tr>
<tr>
<td>DKTFM1*#I0657</td>
<td>650</td>
<td>117</td>
<td>440</td>
<td>0.63</td>
<td>215</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#I0657</td>
<td>650</td>
<td>117</td>
<td>440</td>
<td>0.55</td>
<td>225</td>
<td>265</td>
</tr>
<tr>
<td>DKTFM1*#I0787</td>
<td>780</td>
<td>117</td>
<td>515</td>
<td>0.57</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#I0787</td>
<td>780</td>
<td>117</td>
<td>515</td>
<td>0.49</td>
<td>260</td>
<td>310</td>
</tr>
<tr>
<td>DKTFM3*#I0836</td>
<td>835</td>
<td>165</td>
<td>365</td>
<td>1.03</td>
<td>180</td>
<td>210</td>
</tr>
<tr>
<td>DKTFM4*#I0836</td>
<td>835</td>
<td>165</td>
<td>365</td>
<td>0.94</td>
<td>185</td>
<td>215</td>
</tr>
<tr>
<td>DKTFM1*#I0917</td>
<td>910</td>
<td>117</td>
<td>590</td>
<td>0.53</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#I0917</td>
<td>910</td>
<td>117</td>
<td>590</td>
<td>0.45</td>
<td>295</td>
<td>355</td>
</tr>
<tr>
<td>DKTFM3*#I1047</td>
<td>1040</td>
<td>165</td>
<td>440</td>
<td>0.88</td>
<td>215</td>
<td>250</td>
</tr>
<tr>
<td>DKTFM4*#I1047</td>
<td>1040</td>
<td>165</td>
<td>440</td>
<td>0.79</td>
<td>220</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM1*#I1107</td>
<td>1100</td>
<td>117</td>
<td>705</td>
<td>0.48</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#I1107</td>
<td>1100</td>
<td>117</td>
<td>705</td>
<td>0.40</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#I1257</td>
<td>1250</td>
<td>165</td>
<td>515</td>
<td>0.78</td>
<td>245</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#I1257</td>
<td>1250</td>
<td>165</td>
<td>515</td>
<td>0.69</td>
<td>255</td>
<td>295</td>
</tr>
<tr>
<td>DKTFM1*#I1307</td>
<td>1300</td>
<td>117</td>
<td>815</td>
<td>0.45</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#I1307</td>
<td>1300</td>
<td>117</td>
<td>815</td>
<td>0.37</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#I1467</td>
<td>1460</td>
<td>165</td>
<td>590</td>
<td>0.71</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#I1467</td>
<td>1460</td>
<td>165</td>
<td>590</td>
<td>0.62</td>
<td>290</td>
<td>335</td>
</tr>
<tr>
<td>DKTFM1*#I1787</td>
<td>1780</td>
<td>165</td>
<td>705</td>
<td>0.64</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#I1787</td>
<td>1780</td>
<td>165</td>
<td>705</td>
<td>0.55</td>
<td>340</td>
<td>395</td>
</tr>
<tr>
<td>DKTFM3*#I2087</td>
<td>2080</td>
<td>165</td>
<td>815</td>
<td>0.60</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#I2087</td>
<td>2080</td>
<td>165</td>
<td>815</td>
<td>0.51</td>
<td>385</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  
# Insert W (without) or M (brackets) for fixing

Un = 4200Vdc

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>$R_s$ (mΩ)</th>
<th>$I_{rms}$ thermal 1 (A)</th>
<th>$I_{rms}$ thermal 2 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTFM1*#J1072</td>
<td>720</td>
<td>117</td>
<td>590</td>
<td>0.30</td>
<td>300</td>
<td>355</td>
</tr>
<tr>
<td>DKTFM3*#J0847</td>
<td>840</td>
<td>165</td>
<td>440</td>
<td>0.58</td>
<td>230</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#J0847</td>
<td>840</td>
<td>165</td>
<td>440</td>
<td>0.49</td>
<td>240</td>
<td>280</td>
</tr>
<tr>
<td>DKTFM1*#J0875</td>
<td>875</td>
<td>117</td>
<td>705</td>
<td>0.36</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#J0875</td>
<td>875</td>
<td>117</td>
<td>705</td>
<td>0.28</td>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#J1007</td>
<td>1000</td>
<td>165</td>
<td>515</td>
<td>0.54</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#J1007</td>
<td>1000</td>
<td>165</td>
<td>515</td>
<td>0.44</td>
<td>280</td>
<td>320</td>
</tr>
<tr>
<td>DKTFM1*#J1037</td>
<td>1030</td>
<td>117</td>
<td>815</td>
<td>0.35</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#J1037</td>
<td>1030</td>
<td>117</td>
<td>815</td>
<td>0.27</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#J1177</td>
<td>1170</td>
<td>165</td>
<td>590</td>
<td>0.50</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#J1177</td>
<td>1170</td>
<td>165</td>
<td>590</td>
<td>0.41</td>
<td>315</td>
<td>365</td>
</tr>
<tr>
<td>DKTFM3*#J1427</td>
<td>1420</td>
<td>165</td>
<td>705</td>
<td>0.47</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#J1427</td>
<td>1420</td>
<td>165</td>
<td>705</td>
<td>0.38</td>
<td>365</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*#J1687</td>
<td>1680</td>
<td>165</td>
<td>815</td>
<td>0.45</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#J1687</td>
<td>1680</td>
<td>165</td>
<td>815</td>
<td>0.36</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  # Insert W (without) or M (brackets) for fixing
## TRAFIM PRODUCTS
1950Vdc to 6000Vdc

### RATINGS AND PART NUMBER REFERENCE

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>Rs (mΩ)</th>
<th>$I_{th}^{1}$ (A)</th>
<th>$I_{th}^{2}$ (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTFM1*K0167</td>
<td>160</td>
<td>117</td>
<td>215</td>
<td>0.85</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>DKTFM2*K0167</td>
<td>160</td>
<td>117</td>
<td>215</td>
<td>0.77</td>
<td>95</td>
<td>115</td>
</tr>
<tr>
<td>DKTFM1*K0247</td>
<td>240</td>
<td>117</td>
<td>290</td>
<td>0.63</td>
<td>125</td>
<td>150</td>
</tr>
<tr>
<td>DKTFM2*K0247</td>
<td>240</td>
<td>117</td>
<td>290</td>
<td>0.55</td>
<td>130</td>
<td>155</td>
</tr>
<tr>
<td>DKTFM3*K2656</td>
<td>265</td>
<td>165</td>
<td>215</td>
<td>1.18</td>
<td>105</td>
<td>120</td>
</tr>
<tr>
<td>DKTFM4*K2656</td>
<td>265</td>
<td>165</td>
<td>215</td>
<td>1.09</td>
<td>110</td>
<td>125</td>
</tr>
<tr>
<td>DKTFM1*K3156</td>
<td>315</td>
<td>117</td>
<td>365</td>
<td>0.53</td>
<td>160</td>
<td>195</td>
</tr>
<tr>
<td>DKTFM2*K3156</td>
<td>315</td>
<td>117</td>
<td>365</td>
<td>0.45</td>
<td>165</td>
<td>200</td>
</tr>
<tr>
<td>DKTFM3*K3956</td>
<td>395</td>
<td>165</td>
<td>290</td>
<td>0.87</td>
<td>145</td>
<td>165</td>
</tr>
<tr>
<td>DKTFM4*K3956</td>
<td>395</td>
<td>165</td>
<td>290</td>
<td>0.78</td>
<td>150</td>
<td>170</td>
</tr>
<tr>
<td>DKTFM1*K3956</td>
<td>395</td>
<td>117</td>
<td>440</td>
<td>0.47</td>
<td>195</td>
<td>235</td>
</tr>
<tr>
<td>DKTFM2*K3956</td>
<td>395</td>
<td>117</td>
<td>440</td>
<td>0.39</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>DKTFM1*K4756</td>
<td>475</td>
<td>117</td>
<td>515</td>
<td>0.43</td>
<td>230</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*K4756</td>
<td>475</td>
<td>117</td>
<td>515</td>
<td>0.35</td>
<td>235</td>
<td>280</td>
</tr>
<tr>
<td>DKTFM3*K5256</td>
<td>525</td>
<td>165</td>
<td>365</td>
<td>0.72</td>
<td>180</td>
<td>205</td>
</tr>
<tr>
<td>DKTFM4*K5256</td>
<td>525</td>
<td>165</td>
<td>365</td>
<td>0.63</td>
<td>185</td>
<td>210</td>
</tr>
<tr>
<td>DKTFM1*K0057</td>
<td>550</td>
<td>117</td>
<td>590</td>
<td>0.41</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*K0057</td>
<td>550</td>
<td>117</td>
<td>590</td>
<td>0.33</td>
<td>270</td>
<td>320</td>
</tr>
<tr>
<td>DKTFM3*K6556</td>
<td>655</td>
<td>165</td>
<td>440</td>
<td>0.63</td>
<td>210</td>
<td>245</td>
</tr>
<tr>
<td>DKTFM4*K6556</td>
<td>655</td>
<td>165</td>
<td>440</td>
<td>0.54</td>
<td>220</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM1*K6756</td>
<td>675</td>
<td>117</td>
<td>705</td>
<td>0.38</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*K6756</td>
<td>675</td>
<td>117</td>
<td>705</td>
<td>0.30</td>
<td>315</td>
<td>380</td>
</tr>
<tr>
<td>DKTFM3*K7856</td>
<td>785</td>
<td>165</td>
<td>515</td>
<td>0.57</td>
<td>245</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*K7856</td>
<td>785</td>
<td>165</td>
<td>515</td>
<td>0.48</td>
<td>255</td>
<td>295</td>
</tr>
<tr>
<td>DKTFM1*K0797</td>
<td>790</td>
<td>117</td>
<td>815</td>
<td>0.37</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*K0797</td>
<td>790</td>
<td>117</td>
<td>815</td>
<td>0.29</td>
<td>360</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*K9156</td>
<td>915</td>
<td>165</td>
<td>590</td>
<td>0.53</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*K9156</td>
<td>915</td>
<td>165</td>
<td>590</td>
<td>0.44</td>
<td>290</td>
<td>335</td>
</tr>
<tr>
<td>DKTFM3*K1117</td>
<td>1110</td>
<td>165</td>
<td>705</td>
<td>0.50</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*K1117</td>
<td>1110</td>
<td>165</td>
<td>705</td>
<td>0.40</td>
<td>335</td>
<td>390</td>
</tr>
<tr>
<td>DKTFM3*K1307</td>
<td>1300</td>
<td>165</td>
<td>815</td>
<td>0.47</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*K1307</td>
<td>1300</td>
<td>165</td>
<td>815</td>
<td>0.38</td>
<td>380</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  
# Insert W (without) or M (brackets) for fixing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
### RATINGS AND PART NUMBER REFERENCE

**Un = 5800Vdc**

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>$R_s$ (mΩ)</th>
<th>$I_{\text{rms thermal 1}}$ (A)</th>
<th>$I_{\text{rms thermal 2}}$ (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTFM1*L0137</td>
<td>130</td>
<td>117</td>
<td>215</td>
<td>0.91</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>DKTFM2*L0137</td>
<td>130</td>
<td>117</td>
<td>215</td>
<td>0.83</td>
<td>85</td>
<td>105</td>
</tr>
<tr>
<td>DKTFM1*L1956</td>
<td>195</td>
<td>117</td>
<td>290</td>
<td>0.68</td>
<td>115</td>
<td>140</td>
</tr>
<tr>
<td>DKTFM2*L1956</td>
<td>195</td>
<td>117</td>
<td>290</td>
<td>0.60</td>
<td>120</td>
<td>145</td>
</tr>
<tr>
<td>DKTFM3*L2156</td>
<td>215</td>
<td>165</td>
<td>215</td>
<td>1.29</td>
<td>95</td>
<td>110</td>
</tr>
<tr>
<td>DKTFM4*L2156</td>
<td>215</td>
<td>165</td>
<td>215</td>
<td>1.20</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>DKTFM1*L0267</td>
<td>260</td>
<td>117</td>
<td>365</td>
<td>0.56</td>
<td>150</td>
<td>180</td>
</tr>
<tr>
<td>DKTFM2*L0267</td>
<td>260</td>
<td>117</td>
<td>365</td>
<td>0.48</td>
<td>155</td>
<td>185</td>
</tr>
<tr>
<td>DKTFM3*L3256</td>
<td>325</td>
<td>165</td>
<td>290</td>
<td>0.94</td>
<td>130</td>
<td>150</td>
</tr>
<tr>
<td>DKTFM4*L3256</td>
<td>325</td>
<td>165</td>
<td>290</td>
<td>0.85</td>
<td>135</td>
<td>155</td>
</tr>
<tr>
<td>DKTFM1*L3256</td>
<td>325</td>
<td>117</td>
<td>440</td>
<td>0.50</td>
<td>180</td>
<td>215</td>
</tr>
<tr>
<td>DKTFM2*L3256</td>
<td>325</td>
<td>117</td>
<td>440</td>
<td>0.42</td>
<td>185</td>
<td>220</td>
</tr>
<tr>
<td>DKTFM1*L0397</td>
<td>390</td>
<td>117</td>
<td>515</td>
<td>0.45</td>
<td>210</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*L0397</td>
<td>390</td>
<td>117</td>
<td>515</td>
<td>0.37</td>
<td>215</td>
<td>260</td>
</tr>
<tr>
<td>DKTFM3*L4356</td>
<td>435</td>
<td>165</td>
<td>365</td>
<td>0.77</td>
<td>165</td>
<td>190</td>
</tr>
<tr>
<td>DKTFM4*L4356</td>
<td>435</td>
<td>165</td>
<td>365</td>
<td>0.68</td>
<td>170</td>
<td>195</td>
</tr>
<tr>
<td>DKTFM1*L4556</td>
<td>455</td>
<td>117</td>
<td>590</td>
<td>0.43</td>
<td>240</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*L4556</td>
<td>455</td>
<td>117</td>
<td>590</td>
<td>0.35</td>
<td>245</td>
<td>295</td>
</tr>
<tr>
<td>DKTFM3*L0547</td>
<td>540</td>
<td>165</td>
<td>440</td>
<td>0.67</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>DKTFM4*L0547</td>
<td>540</td>
<td>165</td>
<td>440</td>
<td>0.58</td>
<td>205</td>
<td>235</td>
</tr>
<tr>
<td>DKTFM1*L5556</td>
<td>555</td>
<td>117</td>
<td>705</td>
<td>0.40</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*L5556</td>
<td>555</td>
<td>117</td>
<td>705</td>
<td>0.32</td>
<td>295</td>
<td>350</td>
</tr>
<tr>
<td>DKTFM3*L0657</td>
<td>650</td>
<td>165</td>
<td>515</td>
<td>0.61</td>
<td>230</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*L0657</td>
<td>650</td>
<td>165</td>
<td>515</td>
<td>0.51</td>
<td>240</td>
<td>275</td>
</tr>
<tr>
<td>DKTFM1*L6556</td>
<td>655</td>
<td>117</td>
<td>815</td>
<td>0.38</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*L6556</td>
<td>655</td>
<td>117</td>
<td>815</td>
<td>0.30</td>
<td>335</td>
<td>400</td>
</tr>
<tr>
<td>DKTFM3*L7556</td>
<td>755</td>
<td>165</td>
<td>590</td>
<td>0.56</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*L7556</td>
<td>755</td>
<td>165</td>
<td>590</td>
<td>0.47</td>
<td>270</td>
<td>310</td>
</tr>
<tr>
<td>DKTFM3*L0927</td>
<td>920</td>
<td>165</td>
<td>705</td>
<td>0.52</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*L0927</td>
<td>920</td>
<td>165</td>
<td>705</td>
<td>0.43</td>
<td>315</td>
<td>365</td>
</tr>
<tr>
<td>DKTFM3*L1087</td>
<td>1080</td>
<td>165</td>
<td>815</td>
<td>0.49</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*L1087</td>
<td>1080</td>
<td>165</td>
<td>815</td>
<td>0.40</td>
<td>360</td>
<td>400</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)  
# Insert W (without) or M (brackets) for fixing

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
## RATINGS AND PART NUMBER REFERENCE

**Un = 6000Vdc**

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Width (mm)</th>
<th>Height (mm)</th>
<th>( R_g ) (mΩ)</th>
<th>( I_{\text{rms thermal 1}} ) (A)</th>
<th>( I_{\text{rms thermal 2}} ) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKTFM1*#M0117</td>
<td>110</td>
<td>117</td>
<td>215</td>
<td>0,98</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>DKTFM2*#M0117</td>
<td>110</td>
<td>117</td>
<td>215</td>
<td>0,72</td>
<td>105</td>
<td>130</td>
</tr>
<tr>
<td>DKTFM1*#M1656</td>
<td>165</td>
<td>117</td>
<td>290</td>
<td>0,64</td>
<td>110</td>
<td>135</td>
</tr>
<tr>
<td>DKTFM2*#M1656</td>
<td>165</td>
<td>117</td>
<td>290</td>
<td>1,39</td>
<td>85</td>
<td>100</td>
</tr>
<tr>
<td>DKTFM3*#M0187</td>
<td>180</td>
<td>165</td>
<td>215</td>
<td>0,90</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>DKTFM2*#M0187</td>
<td>180</td>
<td>165</td>
<td>215</td>
<td>1,30</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>DKTFM1*#M0227</td>
<td>220</td>
<td>117</td>
<td>365</td>
<td>0,59</td>
<td>135</td>
<td>165</td>
</tr>
<tr>
<td>DKTFM2*#M0227</td>
<td>220</td>
<td>117</td>
<td>365</td>
<td>0,51</td>
<td>140</td>
<td>170</td>
</tr>
<tr>
<td>DKTFM3*#M0277</td>
<td>270</td>
<td>165</td>
<td>290</td>
<td>1,01</td>
<td>120</td>
<td>140</td>
</tr>
<tr>
<td>DKTFM4*#M0277</td>
<td>270</td>
<td>165</td>
<td>290</td>
<td>1,30</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>DKTFM1*#M2756</td>
<td>275</td>
<td>117</td>
<td>440</td>
<td>1,30</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>DKTFM2*#M2756</td>
<td>275</td>
<td>117</td>
<td>440</td>
<td>1,30</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>DKTFM4*#M0337</td>
<td>330</td>
<td>117</td>
<td>515</td>
<td>0,48</td>
<td>195</td>
<td>235</td>
</tr>
<tr>
<td>DKTFM2*#M0337</td>
<td>330</td>
<td>117</td>
<td>515</td>
<td>0,40</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>DKTFM3*#M3656</td>
<td>365</td>
<td>165</td>
<td>365</td>
<td>0,82</td>
<td>155</td>
<td>180</td>
</tr>
<tr>
<td>DKTFM4*#M3656</td>
<td>365</td>
<td>165</td>
<td>365</td>
<td>0,73</td>
<td>160</td>
<td>185</td>
</tr>
<tr>
<td>DKTFM1*#M3856</td>
<td>385</td>
<td>117</td>
<td>590</td>
<td>0,45</td>
<td>225</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#M3856</td>
<td>385</td>
<td>117</td>
<td>590</td>
<td>0,37</td>
<td>230</td>
<td>275</td>
</tr>
<tr>
<td>DKTFM3*#M4556</td>
<td>455</td>
<td>165</td>
<td>440</td>
<td>0,71</td>
<td>185</td>
<td>215</td>
</tr>
<tr>
<td>DKTFM4*#M4556</td>
<td>455</td>
<td>165</td>
<td>440</td>
<td>0,62</td>
<td>190</td>
<td>220</td>
</tr>
<tr>
<td>DKTFM1*#M4656</td>
<td>465</td>
<td>117</td>
<td>705</td>
<td>0,41</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#M4656</td>
<td>465</td>
<td>117</td>
<td>705</td>
<td>0,33</td>
<td>275</td>
<td>325</td>
</tr>
<tr>
<td>DKTFM3*#M5456</td>
<td>545</td>
<td>165</td>
<td>515</td>
<td>0,64</td>
<td>215</td>
<td>250</td>
</tr>
<tr>
<td>DKTFM4*#M5456</td>
<td>545</td>
<td>165</td>
<td>515</td>
<td>0,55</td>
<td>220</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM1*#M5557</td>
<td>550</td>
<td>117</td>
<td>815</td>
<td>0,39</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM2*#M5557</td>
<td>550</td>
<td>117</td>
<td>815</td>
<td>0,31</td>
<td>315</td>
<td>375</td>
</tr>
<tr>
<td>DKTFM3*#M6356</td>
<td>635</td>
<td>165</td>
<td>590</td>
<td>0,59</td>
<td>245</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#M6356</td>
<td>635</td>
<td>165</td>
<td>590</td>
<td>0,50</td>
<td>250</td>
<td>290</td>
</tr>
<tr>
<td>DKTFM3*#M7756</td>
<td>775</td>
<td>165</td>
<td>705</td>
<td>0,54</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#M7756</td>
<td>775</td>
<td>165</td>
<td>705</td>
<td>0,45</td>
<td>295</td>
<td>345</td>
</tr>
<tr>
<td>DKTFM3*#M0917</td>
<td>910</td>
<td>165</td>
<td>815</td>
<td>0,51</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>DKTFM4*#M0917</td>
<td>910</td>
<td>165</td>
<td>815</td>
<td>0,42</td>
<td>340</td>
<td>390</td>
</tr>
</tbody>
</table>

* Insert terminal type (1, 2, 3 or 4)

# Insert W (without) or M (brackets) for fixing
TRAFIM PRODUCTS
1950Vdc to 6000Vdc

CALCULATION FORM

<table>
<thead>
<tr>
<th>Specification</th>
<th>Your Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance C (μF)</td>
<td>Capacitance C (μF)</td>
</tr>
<tr>
<td>Working voltage U_w (V)</td>
<td>Rated voltage U_n (V)</td>
</tr>
<tr>
<td>Rms current I_rms (A rms)</td>
<td>Serial resistance R_s (mΩ)</td>
</tr>
<tr>
<td>Frequency f (Hz)</td>
<td>Thermal resistance between hot spot and case R_th1 (°C/W)</td>
</tr>
<tr>
<td>Ripple voltage U_r (V)</td>
<td>Thermal resistance between case and ambient air R_th2 (°C/W)</td>
</tr>
<tr>
<td>Ambient temperature θ_amb (°C)</td>
<td></td>
</tr>
<tr>
<td>Lifetime @ V_w, I_rms and θ_amb hours</td>
<td></td>
</tr>
<tr>
<td>Parasitic inductance L (nH)</td>
<td></td>
</tr>
<tr>
<td>Cooling conditions</td>
<td></td>
</tr>
</tbody>
</table>

Calculations

Maximum ripple voltage \[ U_{\text{max}} = 0.45 U_n \]

The maximum ripple voltage of the selected capacitor must be in any case higher than the ripple voltage of your application

<table>
<thead>
<tr>
<th>Ratio ( U_w/U_n )</th>
<th>( p = U_w/U_n )</th>
<th>( p = )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joule losses</td>
<td>( P_j = R_s \times I_{\text{rms}}^2 )</td>
<td>( P_j = )</td>
</tr>
<tr>
<td>Dielectric losses</td>
<td>( P_d = Q \times \tan \delta = Q \times 3.10^{-4} )</td>
<td>( P_d = )</td>
</tr>
<tr>
<td>Hot spot temperature ( \theta_{HS} )</td>
<td>( \theta_{HS} = \theta_\text{amb} + (P_j + P_d) \times (R_{\text{th1}} + R_{\text{th2}}) )</td>
<td>( \theta_{HS} = )</td>
</tr>
</tbody>
</table>

The hot spot temperature must be in any case lower than 85°C

LIFETIME EXPECTANCY VS HOT SPOT TEMPERATURE AND VOLTAGE

Expected lifetime at hot spot calculated and \( U = U_w \)
This questionnaire lists the information we require to prepare an offer according to your exact requirements

<table>
<thead>
<tr>
<th>Applications</th>
<th>DC Filtering</th>
<th>Discharge*</th>
<th>Protection*</th>
<th>Tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance (μF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolerance (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>Vpeak</td>
<td>Vch</td>
<td>Vpeak</td>
<td>Vdc</td>
</tr>
<tr>
<td>Ripple Voltage (peak to peak)</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working Frequency (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Current</td>
<td>Arms</td>
<td>Apeak</td>
<td>Arms</td>
<td>Arms</td>
</tr>
<tr>
<td>Maximum Current/Duration</td>
<td>Arms</td>
<td>s</td>
<td>Apeak</td>
<td></td>
</tr>
<tr>
<td>Discharge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse Duration (5% lpeak)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to lpeak (μs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ringing Frequency (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversal Voltage (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>shots/min/hour/day</td>
<td></td>
<td>Hz</td>
<td></td>
</tr>
<tr>
<td>Hold Time @ Full Voltage (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fault Peak Current / nb shots</td>
<td>Apeak</td>
<td>shots</td>
<td>Apeak</td>
<td>shots</td>
</tr>
<tr>
<td>Fault Reversal Voltage (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifetime Expectancy</td>
<td>hours</td>
<td>shots</td>
<td>hours</td>
<td>hours</td>
</tr>
<tr>
<td>Maximum Inductance (nH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Voltage between Terminals (V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Voltage between Shorted Terminals and Case (V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Surge Voltage (MSV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSV Duration / Frequency</td>
<td>s/year</td>
<td>s</td>
<td>s/year</td>
<td></td>
</tr>
</tbody>
</table>

*Due to the particularities of varying waveforms in such application, more information on the exact nature of waveform is generally required for a full analysis.

<table>
<thead>
<tr>
<th>Description</th>
<th>Dimensions (mm) / Shape</th>
<th>Operating Position</th>
<th>Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section:</td>
<td>Height:</td>
<td>vertical, horizontal</td>
<td>type</td>
</tr>
<tr>
<td>rectangular, cylindrical</td>
<td></td>
<td>inclined, upside down</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal Characteristics</th>
<th>Storage Temperature (°C)</th>
<th>Operating Temperature (°C)</th>
<th>Cooling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>min.</td>
<td>min.</td>
<td>Natural Convection</td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>average</td>
<td>Forced Air (m/s)</td>
<td></td>
</tr>
<tr>
<td>max.</td>
<td>max.</td>
<td>Water</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
FILFIM PRODUCTS
6500Vdc to 56000Vdc

GENERAL DESCRIPTION

The FILFIM series is specifically designed for DC filtering applications for voltages up to 56000V.

Large case sizes up to 100 liters and high specific energy up to 250J/l together with safe and reliable Controlled Self Healing Technology make this series particularly suitable for power converters in energy and power transmission areas, active correction and high power DC supply.

The Controlled Self Healing Technology is based on a high temperature grade metallized film impregnated with vegetable oil allowing operating temperature up to 85°C.

Standard designs proposed in this catalogue are covering a wide range of voltage and capacitance values.

In case of specific requirements about shape and performances, feel free to contact your local KYOCERA AVX representative.

PACKAGING MATERIAL

- non-painted
- with or without fixing brackets
- grounding via a nut on the top of the case

3 terminal sizes vs voltage
1 or 2 terminals

STANDARDS

IEC 61071: Power electronic capacitors
IEC 60068-2: Environmental testing

HOW TO ORDER

<table>
<thead>
<tr>
<th>DK</th>
<th>IFM</th>
<th>1</th>
<th>B</th>
<th>M</th>
<th>B</th>
<th>0306</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>Section and Option</td>
<td>Terminals Type</td>
<td>Fixing</td>
<td>Voltage</td>
<td>Capacitance EIA code</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>1 terminal</td>
<td>A, B or C</td>
<td>W = without M = brackets</td>
<td>A = 6500V</td>
<td>A = 6500V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>2 terminals</td>
<td>A, B or C</td>
<td></td>
<td>B = 8900V</td>
<td>B = 8900V</td>
<td></td>
</tr>
<tr>
<td>520x185</td>
<td>1 terminal</td>
<td>A, B or C</td>
<td></td>
<td>C = 9000V</td>
<td>C = 9000V</td>
<td></td>
</tr>
<tr>
<td>520x185</td>
<td>2 terminals</td>
<td>A, B or C</td>
<td></td>
<td>D = 10500V</td>
<td>D = 10500V</td>
<td></td>
</tr>
<tr>
<td>695x185</td>
<td>1 terminal</td>
<td>A, B or C</td>
<td></td>
<td>E = 12000V</td>
<td>E = 12000V</td>
<td></td>
</tr>
<tr>
<td>695x185</td>
<td>2 terminals</td>
<td>A, B or C</td>
<td></td>
<td>F = 14500V</td>
<td>F = 14500V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>1 terminal</td>
<td>A, B or C</td>
<td></td>
<td>G = 15800V</td>
<td>G = 15800V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>2 terminals</td>
<td>A, B or C</td>
<td></td>
<td>H = 18000V</td>
<td>H = 18000V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>3 terminals</td>
<td>A, B or C</td>
<td></td>
<td>I = 22000V</td>
<td>I = 22000V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>4 terminals</td>
<td>A, B or C</td>
<td></td>
<td>J = 26000V</td>
<td>J = 26000V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>5 terminals</td>
<td>A, B or C</td>
<td></td>
<td>K = 28000V</td>
<td>K = 28000V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>6 terminals</td>
<td>A, B or C</td>
<td></td>
<td>L = 32000V</td>
<td>L = 32000V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>7 terminals</td>
<td>A, B or C</td>
<td></td>
<td>M = 36000V</td>
<td>M = 36000V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>8 terminals</td>
<td>A, B or C</td>
<td></td>
<td>N = 42000V</td>
<td>N = 42000V</td>
<td></td>
</tr>
<tr>
<td>350x185</td>
<td>9 terminals</td>
<td>A, B or C</td>
<td></td>
<td>O = 56000V</td>
<td>O = 56000V</td>
<td></td>
</tr>
</tbody>
</table>

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

031417

– HIGH POWER CAPACITORS –
DEFINITIONS

\[ C_n (\mu F) \] capacitance: nominal value of the capacitance measured at \( \theta_{\text{amb}} = 25^\circ C \pm 10^\circ C \)

\[ U_n (V) \] rated DC voltage: maximum operating peak voltage of either polarity (non-reversing type waveform), for which the capacitor has been designed for continuous operation

\[ U_r (V) \] working voltage: value of the maximum operating recurrent voltage for a given hot spot temperature and an expected lifetime

\[ U_w (V) \] ripple voltage: peak-to-peak alternating component of the unidirectional voltage

\[ L_s (nH) \] parasitic inductance: capacitor series self-inductance

\[ R_s (m\Omega) \] series resistance: capacitor series resistance due to galvanic circuit

\[ I_{\text{rms}} (A) \text{ max} (A) \] RMS current: Maximum rms current value @ 100Hz for continuous operation

\[ \theta_{\text{amb}} (^\circ C) \] cooling air temperature: temperature of the cooling air measured at the hottest position of the capacitor, under steady-state conditions, midway between two units. NOTE: If only one unit is involved, it is the temperature measured at a point approximately 0.1 m away from the capacitor container and at two-thirds of the height from its base.

\[ \theta_{HS} (^\circ C) \] hot spot temperature: highest temperature obtained inside the case of the capacitor in thermal equilibrium

CHARACTERISTICS

- Capacitance range \( C_n \): 2.6\( \mu F \) to 612\( \mu F \)
- Tolerance on \( C_n \): ±10%
- Rated DC voltage \( U_n \): 6500 to 56000V (100kV on specific design)
- Lifetime at \( U_n \) and 80°C hot-spot temperature and \( |I/C|/C < 2\% \): 100,000h
- Parasitic inductance \( L_s \): 250nH to 830nH
- Maximum rms current \( I_{\text{rms max}} \): up to 120A
- Test voltage between terminals @ 25°C: 1.5 \( U_n \) for 10s
- Test voltage between terminals and Case @ 25°C: 1.5 \( U_n \) for 10s
- Dielectric: Polypropylene
- Climatic Category: 55 / 85 / 56 (IEC 60068)
- Working temperature: -55°C / +85°C (according to the power dissipated)
- Storage temperature: -55°C / +85°C
- Calorific value: 30 MJ/kg

LIFETIME EXPECTANCY VS HOT SPOT TEMPERATURE AND VOLTAGE

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
THE CAPACITOR LIFETIME DEPENDS ON THE WORKING VOLTAGE AND THE HOT SPOT TEMPERATURE.

Our caps are designed to meet 100,000 hours lifetime at rated voltage and 70°C hot spot temperature. In accordance with operating conditions, please calculate the hot spot temperature and deduce from this calculation if the obtained lifetime can suit the application.

1. From the tables, select a capacitor with required capacitance \( C_n \) and voltage \( U_n \).

   Calculate the maximum ripple voltage allowed for the selected cap:
   \[
   U_{max} = 0.2U_n
   \]

   If \( U > U_{max} \), select a capacitor with higher rated voltage or contact your local sales representative.

   Make sure \( I_{rms} \) application < \( I_{rms} \) table.

   Copy out:
   - serial resistance \( R_s \): see table of values
   - thermal resistances \( R_{th1} \) and \( R_{th2} \)

2. Hot spot temperature calculation

   Total losses are calculated as follows: \( P = P_J + P_d \)
   - Joule losses: \( P_J = R_s \times I_{rms}^2 \)
   - Dielectric losses: \( P_d = Q \times \tan \delta_0 \) with
     - \( Q \) (reactive power) \( = \frac{I_{rms}^2}{C} \) for a sinusoidal waveform
     - \( \tan \delta_0 = 3 \times 10^{-4} \) (dielectric losses of polypropylene + oil)

   Hot spot temperature will be:
   \[
   \theta_{HS} = \theta_{amb} + (P_J + P_d) \times (R_{th1} + R_{th2})
   \]

   \( \theta_{HS} \) absolute maximum is 85°C

   If temperature is higher than 85°C, come back to #1 and start again with another selection.

   \( R_{th1} \): thermal resistance between hot spot and case

   \( R_{th2} \): thermal resistance between case and ambient air

3. Refer to the curve and deduce the lifetime vs \( U_w/U_n \) ratio

   eg: rated voltage 12000V
   working voltage 11400V
   \( \rho = 0.95 \) lifetime 200,000 hours
   @ 70°C hot spot temperature

Please, find a calculation form at the end of the catalog.
**FILFIM PRODUCTS**

6500Vdc to 56000Vdc

**THERMAL RESISTANCES**

- **$R_{th1}$ (°C/W):** Thermal resistance between hot spot and case
- **$R_{th2}$ (°C/W):** Thermal resistance between case and ambient air under natural convection and forced air

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>$R_{th1}$ (°C/W)</th>
<th>$R_{th2}$ (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>350x185 Section (LxW)</td>
<td>520x185 Section (LxW)</td>
</tr>
<tr>
<td>315</td>
<td>0.2</td>
<td>0.15</td>
</tr>
<tr>
<td>410</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>500</td>
<td>0.14</td>
<td>0.1</td>
</tr>
<tr>
<td>595</td>
<td>0.12</td>
<td>0.085</td>
</tr>
<tr>
<td>685</td>
<td>0.1</td>
<td>0.075</td>
</tr>
<tr>
<td>770</td>
<td>0.09</td>
<td>0.07</td>
</tr>
</tbody>
</table>

For confined area, capacitor working in a closed cabinet, a thermal test under real conditions is necessary to evaluate the thermal resistance.

**PARASITIC INDUCTANCE VS SIZE**

Discharge method measurement

$\text{Ls} \ (nH) = 0.332 \times \text{Height (mm)} + \text{Lterminal} \times \text{terminal qty}$

**WEIGHT VS SIZE**

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>Weight (kg)</th>
<th>Section 350x185</th>
<th>Section 520x185</th>
<th>Section 695x185</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td>29</td>
<td>41</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>36</td>
<td>52</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>43</td>
<td>62</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>595</td>
<td>50</td>
<td>72</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>685</td>
<td>57</td>
<td>82</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>770</td>
<td>63</td>
<td>91</td>
<td>119</td>
<td></td>
</tr>
</tbody>
</table>
FILFIM PRODUCTS
6500Vdc to 56000Vdc

MTBF CALCULATION
The failure rate $\lambda_B$ depends on hot spot temperature $\theta_{HS}$ and charge ratio $\rho$.

$$\rho = \frac{U_w}{U_n}$$

$$\lambda_B = 3 \times 10^{5.73(\rho^{-1})} \times \theta^\left(\frac{3.933\theta - 2.72}{568}\right) \times 10^{-9} \text{ in failures/hour}$$

GENERAL FAILURE RATE
$\lambda = \lambda_B \times \pi_Q \times \pi_B \times \pi_E$ failures/hour • $\pi_Q$, $\pi_B$ and $\pi_E$ see following tables

<table>
<thead>
<tr>
<th>Qualification</th>
<th>Qualification factor $nQ$</th>
<th>Environment</th>
<th>Environment factor $nE$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product qualified on IEC61071 or IEC61881 and internal qualification</td>
<td>1</td>
<td>On ground (good conditions)</td>
<td>1</td>
</tr>
<tr>
<td>Product qualified on IEC61071 or IEC61881</td>
<td>2</td>
<td>On ground (fixed materials)</td>
<td>2</td>
</tr>
<tr>
<td>Product answering on another norm</td>
<td>5</td>
<td>On ground (on board)</td>
<td>4</td>
</tr>
<tr>
<td>Product without qualification</td>
<td>15</td>
<td>On ship</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On plane</td>
<td>15</td>
</tr>
</tbody>
</table>

MEAN TIME BETWEEN FAILURE (MTBF)
$$MTBF = \frac{1}{\lambda} \text{ hours}$$

SURVIVAL FUNCTION
$$N = N_0 \times \exp(-\lambda t)$$
$N$ is the number of pieces still working after $t$ hours.
$N_0$ is the number of pieces at the origin ($t = 0$)

FAILURE MODE
Main failure mode due to KYOCERA AVX’s Controlled Self-Healing Technology is only losses of capacitance. Thanks to the Controlled Self-Healing Technology, the efficient solution to interrupt the self-healing process and prevent the avalanche effect leading to the worse sequence of events for none controlled self-healing capacitors: polypropylene molecular cracking, gas emission and potential explosion in confined box.

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

031417
FILFIM PRODUCTS
6500Vdc to 56000Vdc

DIMENSIONS

<table>
<thead>
<tr>
<th>TERMINALS</th>
<th>L</th>
<th>Wmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TERMINAL</td>
<td>≥520mm</td>
<td>215mm</td>
</tr>
<tr>
<td>2 TERMINALS</td>
<td>&lt;520mm</td>
<td>205mm</td>
</tr>
</tbody>
</table>

TERMINALS

- **Type A** Un≤16kV
  - L=140nH
  - max torque 25Nm

- **Type B** 16kV<Un≤32kV
  - L=240nH
  - max torque 25Nm

- **Type C** 32kV<Un≤56kV
  - L=285nH
  - max torque 25Nm

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at [www.avx.com/disclaimer/](http://www.avx.com/disclaimer/) by reference and should be reviewed in full before placing any order.
### FILFIM PRODUCTS

6500Vdc to 56000Vdc

**RATINGS AND PART NUMBER REFERENCE**

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Capacitance (μF)</th>
<th>Height (mm)</th>
<th>R&lt;sub&gt;2&lt;/sub&gt; (mΩ)</th>
<th>I&lt;sub&gt;max&lt;/sub&gt; (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un = 5600Vdc Terminal type A Section 350x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#A1856</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#A2756</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#A3626</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#A0457</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#A5376</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#A6126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 7900Vdc Terminal type A Section 350x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#B1266</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#B1846</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#B2426</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#B0137</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#B3965</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#B0417</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 9000Vdc Terminal type A Section 350x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#C0956</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#C3866</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#C1816</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#C2256</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#C5966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#C0376</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 10500Vdc Terminal type A Section 350x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#D0736</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#D0176</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#D0147</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#D1746</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#D2086</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#D2376</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 12000Vdc Terminal type A Section 350x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#E0556</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#E0806</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#E1106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#E0137</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#E1566</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#E1776</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 14500Vdc Terminal type A Section 350x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#F3755</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#F0556</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#F0726</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#F0966</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#F1066</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#F1216</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 15800Vdc Terminal type A Section 350x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#G3155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#G0466</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#G0756</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#G0896</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*A#G1026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 18000Vdc Terminal type B Section 350x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#H1355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#H0306</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#H0456</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#H0516</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#H0626</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 22000Vdc Terminal type B Section 520x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#I2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#I3155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#I4255</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#I0546</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#I0656</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#I0756</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 26000Vdc Terminal type B Section 520x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#J1425</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#J2255</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#J3006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#J0386</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#J0466</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#J0536</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 28000Vdc Terminal type B Section 520x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#K0585</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#K0905</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#K0126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#K1555</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#K1855</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#K2155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 32000Vdc Terminal type B Section 695x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#L1285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#L0206</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#L0276</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#L0346</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#L0416</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*B#L0476</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 36000Vdc Terminal type C Section 695x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#M0956</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#M1425</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#M1935</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#M2485</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#M3506</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#M3555</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 42000Vdc Terminal type C Section 520x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#N0355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#N0565</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#N0775</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#N0985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#N1256</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#N0146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Un = 56000Vdc Terminal type C Section 695x185 (LxW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#O0265</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#O0425</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#O0575</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#O0735</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#O0885</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLIFM*C#O1035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Section 350x185: Insert section and option (1 or 2)
* Section 520x185: Insert section and option (3 or 4)
* Section 695x185: Insert section and option (5 or 6)
* Insert W (without) or M (brackets) for fixing

---

36
**CALCULATION FORM**

<table>
<thead>
<tr>
<th>Specification</th>
<th>Your Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance ( C ) (( \mu )F)</td>
<td>PN</td>
</tr>
<tr>
<td>Working voltage ( U_w ) (V)</td>
<td>Capacitance ( C ) (( \mu )F)</td>
</tr>
<tr>
<td>Rms current ( I_{rms} ) (A)</td>
<td>Rated voltage ( U_n ) (V)</td>
</tr>
<tr>
<td>Frequency ( f ) (Hz)</td>
<td>Serial resistance ( R_s ) (m( \Omega ))</td>
</tr>
<tr>
<td>Ripple voltage ( U ) (V)</td>
<td>Thermal resistance between hot spot and case ( R_{hs} ) (°C/W)</td>
</tr>
<tr>
<td>Ambient temperature ( T_{amb} ) (°C)</td>
<td>Thermal resistance between case and ambient air ( R_{ca} ) (°C/W)</td>
</tr>
<tr>
<td>Lifetime @ ( V_wI_{rms} ) and ( T_{amb} ) hours</td>
<td></td>
</tr>
<tr>
<td>Parasitic inductance ( L ) (nH)</td>
<td></td>
</tr>
<tr>
<td>Cooling conditions</td>
<td></td>
</tr>
</tbody>
</table>

**Calculations**

\[ \text{Maximum ripple voltage} \quad U_{max} = 0.45U_w \]

The maximum ripple voltage of the selected capacitor must be in any case higher than the ripple voltage of your application.

\[ \text{Ratio} \quad U_{w}/U_{n} = \frac{U_{w}}{U_{n}} \]

The hot spot temperature must be in any case lower than 85°C

**LIFETIME EXPECTANCY VS HOT SPOT TEMPERATURE AND VOLTAGE**

![Graph showing lifetime expectancy vs hot spot temperature and voltage]

Expected lifetime at hot spot calculated and \( U = U_n \)
This questionnaire lists the information we require to prepare an offer according to your exact requirements.

<table>
<thead>
<tr>
<th>Applications</th>
<th>DC Filtering</th>
<th>Discharge*</th>
<th>Protection*</th>
<th>Tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capacitance (μF)</td>
<td>Vpeak</td>
<td>Vrms</td>
<td>Vpeak</td>
</tr>
<tr>
<td></td>
<td>Tolerance (%)</td>
<td>Vch</td>
<td>Vrms</td>
<td>Vrms</td>
</tr>
<tr>
<td></td>
<td>Operating Voltage</td>
<td>Vpeak</td>
<td>Vrms</td>
<td>Vrms</td>
</tr>
<tr>
<td></td>
<td>Ripple Voltage (peak to peak)</td>
<td>V</td>
<td>Vrms</td>
<td>Vrms</td>
</tr>
<tr>
<td></td>
<td>Working Frequency (Hz)</td>
<td>V</td>
<td>Vrms</td>
<td>Vrms</td>
</tr>
<tr>
<td></td>
<td>Operating Current</td>
<td>Arms</td>
<td>Arms</td>
<td>Arms</td>
</tr>
<tr>
<td></td>
<td>Maximum Current/Duration</td>
<td>Arms</td>
<td>Arms</td>
<td>Arms</td>
</tr>
<tr>
<td></td>
<td>Discharge</td>
<td>Arms</td>
<td>s</td>
<td>Apeak</td>
</tr>
<tr>
<td></td>
<td>Pulse Duration (5% Ipeak)</td>
<td>s</td>
<td>Aperiodic</td>
<td>Oscillatory</td>
</tr>
<tr>
<td></td>
<td>Time to Ipeak (μs)</td>
<td>s</td>
<td>Aperiodic</td>
<td>Oscillatory</td>
</tr>
<tr>
<td></td>
<td>Ringing Frequency (Hz)</td>
<td>s</td>
<td>Aperiodic</td>
<td>Oscillatory</td>
</tr>
<tr>
<td></td>
<td>Reversal Voltage (%)</td>
<td>s</td>
<td>Aperiodic</td>
<td>Oscillatory</td>
</tr>
<tr>
<td></td>
<td>Repetition Rate</td>
<td>shots/min/hour/day</td>
<td>shots/min/hour/day</td>
<td>shots/min/hour/day</td>
</tr>
<tr>
<td></td>
<td>Hold Time @ Full Voltage (s)</td>
<td>shots/min/hour/day</td>
<td>shots/min/hour/day</td>
<td>shots/min/hour/day</td>
</tr>
<tr>
<td></td>
<td>Fault Peak Current / nb shots</td>
<td>Apeak</td>
<td>shots</td>
<td>Apeak</td>
</tr>
<tr>
<td></td>
<td>Fault Reversal Voltage (%)</td>
<td>Apeak</td>
<td>shots</td>
<td>Apeak</td>
</tr>
<tr>
<td></td>
<td>Lifetime Expectancy</td>
<td>hours</td>
<td>shots</td>
<td>hours</td>
</tr>
<tr>
<td></td>
<td>Maximum Inductance (nH)</td>
<td>hours</td>
<td>shots</td>
<td>hours</td>
</tr>
<tr>
<td></td>
<td>Test Voltage between Terminals (V)</td>
<td>hours</td>
<td>shots</td>
<td>hours</td>
</tr>
<tr>
<td></td>
<td>Test Voltage between Shorted Terminals and Case (V)</td>
<td>hours</td>
<td>shots</td>
<td>hours</td>
</tr>
<tr>
<td></td>
<td>Maximum Surge Voltage (MSV)</td>
<td>hours</td>
<td>shots</td>
<td>hours</td>
</tr>
<tr>
<td></td>
<td>MSV Duration / Frequency</td>
<td>s</td>
<td>/year</td>
<td>s</td>
</tr>
</tbody>
</table>

*Due to the particularities of varying waveforms in such application, more information on the exact nature of waveform is generally required for a full analysis.

### Description

<table>
<thead>
<tr>
<th>Dimensions (mm) / Shape</th>
<th>Operating Position</th>
<th>Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section: rectangular, cylindrical</td>
<td>vertical, horizontal, inclined, upside down</td>
<td>type</td>
</tr>
<tr>
<td>Height:</td>
<td></td>
<td>quantity</td>
</tr>
</tbody>
</table>

### Thermal Characteristics

<table>
<thead>
<tr>
<th>Storage Temperature (°C)</th>
<th>Operating Temperature (°C)</th>
<th>Cooling Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>min.</td>
<td>min.</td>
<td>Natural Convection</td>
</tr>
<tr>
<td>average</td>
<td>average</td>
<td>Forced Air (m/s)</td>
</tr>
<tr>
<td>max.</td>
<td>max.</td>
<td>Water</td>
</tr>
</tbody>
</table>

### Remarks

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.