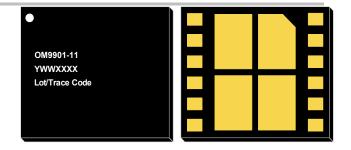


OM9901-11 Data Sheet Power Amplifier Module for Quad-band GSM/GPRS/EDGE

Applications

Quad-band cellular handsets

GMSK Modulation


- Class 4 GSM850/EGSM900 Band
- Class 1 DCS1800/PCS1900 Band
- Class 12 GPRS multi-slot operation

EDGE Modulation

- Class E2 GSM850/EGSM900
- Class E2 DCS1800/PCS1900

Product Features

High efficiency
Programmable bias for improved backed-off efficiency
High linearity for 8PSK
Low stand-by leakage
Compatible with DC-DC converter
Autonomous Over-voltage Protection
Vramp GMSK Power Control Mode
Flip-chip package
Small, low profile package
- 3.0 mm x 3.5 mm x 0.67 mm Typical
- 12-pads configuration

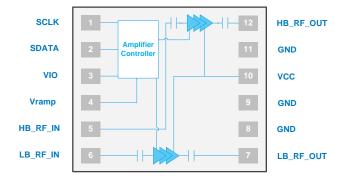


Figure 1. Functional Block Diagram

Product Description

The OM9901-11 power amplifier module (PAM) is designed and optimized for 2G quad-band cellular handsets supporting user-optional control of linear RF or analog Vramp of the GMSK envelope. The low band (LB) PA transmits in the GSM850/EGSM900 bands. The high band (HB) PA supports DCS1800/PCS1900 bands.

The compact 3.0 mm x 3.5 mm x 0.67 mm module consists of a quad-band power amplifier die, a silicon CMOS controller, 50 Ω input and output matching circuitry. The silicon CMOS controller supports fully programmable through the RF Front-End Mobile Industry Processor Interface (RFFE MIPI) with providing PA bias and product identification read-back capability.

The power amplifier blocks, the controller and the passive components are mounted by flip-chip package technology on a multi-layer laminate substrate. The entire assembly is encapsulated with plastic over mold.