At OnMicro, our singular focus is developing best-in-class RF solutions that deliver performance, quality and value. Our exceptional team of RF designers continuously innovates to create next-generation products that provide competitive edge to our customers. These performance advantages are backed by our outstanding sales and applications support teams to help you reduce time-to-market and achieve your design goals. So, whether you are trying to extend battery-life, reduce PCB space, or achieve greater throughput, trust OnMicro for your next project.

Innovative Design Techniques
Our passionate design engineers have the expertise to develop groundbreaking design techniques that produce measurably superior products. Whether it’s designing a higher-performance wireless power amplifiers or efficient IOT RF devices, these designers are focused on delivering a competitive advantage.
**OnMicro’s Competitive Advantage**

- **Innovation**: More than 22% of revenue reinvested in R&D, resulting in 109 patents to date.

- **Quality**: Samsung’s qualified power amplifier supplier.

- **Proven**: Diversified customer base with more than 200 customers, including multiple tier 1 mobile handset manufacturers.

- **Leadership**: One of China’s top RF Power amplifier suppliers, shipping more than 100 million ICs per month.

- **Technology**: Diversified power amplifier portfolio using multiple device technologies, including Bulk CMOS PA, SOI CMOS PA, SiGe BiCMOS PA and GaAs PA. Leading RF CMOS PA shipment in RFIC industry.

- **Stability**: Solid financial profile with sustainable growth.

---

**Operational Excellence**

From wafer processing to packaging and testing, we have developed a world-class supply chain that ensures on-time-delivery with superior quality. In fact, OnMicro’s Quality Management Systems is certified to the ISO9001, ISO14001, and BCM ISO22301 standards.

---

**Applications Expertise**

OnMicro has a proven track record of helping engineers and designers meet their objectives by working closely to optimize the RF front-end for an exceptional end-user experience.
BLE

Bluetooth Low Energy (BLE) is a new Bluetooth technology from BLE4.0 protocol. The BLE chip includes CPU, baseband, RF/analog module, power and clock module, peripheral et.al.

Advantage
- Low power, high integration, excellent performance and compatibility, providing customized services.

Application
- IoT, smart wearables, smart home, smart city.

HS6621C : BLE5.1

RF:
- -95 dBm at 1Mbps sensitivity Bluetooth® low energy
- 5.3mA peak RX, 5.2mA peak TX (0dBm)
- TX Power max +7 dBm

Power Management:
- Deep sleep power 2.5uA

Link Controller:
- BT 5.1 LE PHY, link controller

CPU:
- ARM® Cortex™-M4F, max 64MHz
- 64KB SRAM
- 1MB/512kB sFlash

OM6621P : BLE5.1

RF:
- -96 dBm at 1Mbps sensitivity Bluetooth® low energy
- 6.0mA peak RX, 5.5mA peak TX (0dBm)
- TX Power max +9dBm

Power Management:
- Deep sleep power 2uA

Link Controller:
- BT 5.1 LE PHY, link controller

CPU:
- ARM® Cortex™-M4F, max 128MHz
- 392KB SRAM
- 1MB/2MB sFlash

2.4G

- 2.4GHz wireless communication chip series contains 2.4GHz wireless transceiver chip and 2.4GHz SoC chip.
- 2.4GHz wireless transceiver includes interface module, baseband module and power/clock module.
- The 2.4GHz SoC chip includes an interface module, baseband module, a power clock module, and CPU. It has embedded MCU, memory and various peripherals.

Advantage
- Cost-effective, high integration and reliability, strong anti-interference ability, customized, works with different types of MCUs.

Application
- Smart home, toys, wireless keyboard and mouse, iBeacon.

HS6620

RF:
- -91dBm sensitivity at 1Mbps
- 17mA peak RX, 15mA peak TX (0dBm)
- Support BLE advertising
- GFSK/FSK modulation
- TX Power max +8 dBm

Power Management:
- 2uA power down mode
- 40uA standby mode

OM6228

RF:
- -92dBm sensitivity at 1Mbps
- 17mA peak RX, 15mA peak TX (0dBm)
- Support BLE advertising
- GFSK/FSK modulation
- TX power max +8dBm

Power Management:
- 3uA deep sleep mode
- 30uA standby mode

CPU:
- 8bit CPU, max 16MHz
- 16KB OTP, 256B SRAM

Application:
- Mouse, Keyboard/Mouse, Quadrotor Aircraft, Scale
Low Cost 5G Solutions

OM9576-11 5G n77 L-PAMiD Module

Main Features:
- 5G NR supporting n78(3300~3800MHz)/n77(3300~4200MHz)
- Support n77 receiving simultaneous in dual Rx path
- Support Fast SRS Hopping timing requirements
- Integrated band-pass filtering
- Forward and Reverse Coupler
- Optimized for APT DC-DC operation
- Fully programmable Mobile Industry Processor Interface (MIPI) Control

Main Applications:
- 5G handsets
- 5G Small Cell base station

OM9902-11 Multimode Multiband (MMMB) Power Amplifier for 5G Phase 5N Application

Main Features:
- 5G NR supporting n78(3300~3800MHz)/n77(3300~4200MHz)
- Support n77 receiving simultaneous in dual Rx path
- Support Fast SRS Hopping timing requirements
- Integrated band-pass filtering
- Forward and Reverse Coupler
- Optimized for APT DC-DC operation
- Fully programmable Mobile Industry Processor Interface (MIPI) Control

Main Applications:
- Multi-mode multi-band 3G/4G/5G handsets
- 5G IoT Modem
- 5G Wearable

LTE-M/NB-IoT Solutions

HS8018-31 Low Voltage (1.8V) Broadband IoT Power Amplifier

Main Features:
- Broadband PA supporting APT mode of operation or fixed Vcc supply
- Low-band: B5/B8/B12/B13/B17/B18/B19/B20/B26/B28/B71/B85
- Support Low voltage DC supply(+1.8V)
- Integrated SP6T antenna TX/RX switch; Four additional TRX ports offer greater flexibility for more bands
- MIPI RFFE control interface
- Adaptive biasing scheme for maximum PA efficiencies
- Small, Low Profile Package (4mm×5mm×0.9mm)

Main Applications:
- NB IoT Modem
- LTE Cat-1 and Cat-4 Modem
- Cellular IoT Modem for LPWAN application

OM8443-62 Multimode Multiband (MMMB) Power Amplifier for 3G/4G Application

Main Features:
- Broadband PA supporting APT mode of operation or fixed Vcc supply
- Low-band: B5/B8/B12/B13/B17/B18/B19/B20/B26/B28/B71/B85
- High-band: B7/B38/B40/B41
- 5 LB TX/ 5 MB TX/ 4 HB TX  outputs; Two HB RX ports; Integrated HB TDD T/R switches
- Two Low Band RF inputs supporting separated input filtering
- MIPI bias control for industry-leading PAE for 3G/4G application
- Small package: 4.0 mm × 6.8 mm × 0.72 mm, LGA 42 pad

Main Applications:
- N3G WCDMA, CDMA2000, 4G LTE, NB-IoT, LTE Cat1 and Cat4
- Multi-mode multi-band 3G/LTE handsets
- NB IoT Modem; LTE Cat-1 and Cat-4 Modem
- 4G Wearable
5G RF Switch Solutions

OM8792F High Power 5G DPDT Switch GPIO Control

Main Applications:
- Excellent insertion loss: 0.5 dB at 6 GHz
- Isolation: 18 dB at 6 GHz
- Support SRS
- Fast switch time: 0.7 µs
- High power handling capacity: 38.5 dBm
- Capable of 1.8 / 2.8 V operation
- PIN 2 PIN: B**X22GN10/Q*11122/Q*11022/M**8546C
- LGA-10 1.1 x 1.5 x 0.4 mm

Main Applications:
- Multi-mode multi-band 3G/4G/5G handsets
- 5G IoT Modern
- Antenna diversity switching
- 5G Small Cell base station

OM8795G 5G High Power High Isolation DPDT Switch GPIO Control

Main Applications:
- 0.1~6.0 GHz DPDT Switch:
- Insertion loss: 1.1 dB at 6 GHz
- High isolation: 30 dB at 6 GHz
- ESD HBM: All Pins: 2 kV
- Switch time: 1.2 µs
- High power handling capacity: 38.5 dBm
- Capable of 1.8 V operation
- PIN 2 PIN: Q*11122A/Q*11022A/M**8546S

Main Applications:
- Excellent insertion loss: 0.5 dB at 6 GHz
- Isolation: 18 dB at 6 GHz
- Support SRS
- Fast switch time: 0.7 µs
- High power handling capacity: 38.5 dBm
- Capable of 1.8 / 2.8 V operation
- PIN 2 PIN: B**X22GN10/Q*11122/Q*11022/M**8546C
- LGA-10 1.1 x 1.5 x 0.4 mm

---

<table>
<thead>
<tr>
<th>5G Switch</th>
<th>OM8792F</th>
<th>OM8795G</th>
<th>OM8790F</th>
<th>OM8790M</th>
<th>OM8727G</th>
<th>OM8751D</th>
<th>OM8731M</th>
<th>OM8741M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>DPDT</td>
<td>DPDT</td>
<td>DP4T</td>
<td>SP3T</td>
<td>SPDT</td>
<td>SPDT</td>
<td>SP3T</td>
<td>SP4T</td>
</tr>
<tr>
<td>Package</td>
<td>1.1x1.5mm</td>
<td>1.1x1.5mm</td>
<td>2.0x2.0mm</td>
<td>2.0x2.0mm</td>
<td>1.1x0.7mm</td>
<td>1.0x1.0mm</td>
<td>1.0x1.0mm</td>
<td>1.0x1.0mm</td>
</tr>
<tr>
<td>Interface</td>
<td>GPIO</td>
<td>GPIO</td>
<td>MIPI</td>
<td>MIPI</td>
<td>GPIO</td>
<td>GPIO</td>
<td>MIPI</td>
<td>MIPI</td>
</tr>
<tr>
<td>Max Power</td>
<td>38.5 dBm</td>
<td>38.5 dBm</td>
<td>39 dBm</td>
<td>38.5 dBm</td>
<td>40.5 dBm</td>
<td>32.5 dBm</td>
<td>40 dBm</td>
<td>40 dBm</td>
</tr>
<tr>
<td>Active Current</td>
<td>80 uA</td>
<td>80 uA</td>
<td>90 uA</td>
<td>95 uA</td>
<td>43 uA</td>
<td>15 uA</td>
<td>65 uA</td>
<td>65 uA</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7 to 1.0GHz</td>
<td>0.24 dB</td>
<td>0.30 dB</td>
<td>0.40 dB</td>
<td>0.40 dB</td>
<td>0.25 dB</td>
<td>0.31 dB</td>
<td>0.30 dB</td>
<td>0.30 dB</td>
</tr>
<tr>
<td>1.0 to 2.2GHz</td>
<td>0.32 dB</td>
<td>0.35 dB</td>
<td>0.50 dB</td>
<td>0.55 dB</td>
<td>0.30 dB</td>
<td>0.33 dB</td>
<td>0.33 dB</td>
<td>0.35 dB</td>
</tr>
<tr>
<td>2.2 to 2.7GHz</td>
<td>0.35 dB</td>
<td>0.40 dB</td>
<td>0.55 dB</td>
<td>0.60 dB</td>
<td>0.35 dB</td>
<td>0.37 dB</td>
<td>0.35 dB</td>
<td>0.35 dB</td>
</tr>
<tr>
<td>3.4 to 3.8GHz</td>
<td>0.38 dB</td>
<td>0.60 dB</td>
<td>0.60 dB</td>
<td>0.65 dB</td>
<td>0.40 dB</td>
<td>0.38 dB</td>
<td>0.40 dB</td>
<td>0.40 dB</td>
</tr>
<tr>
<td>3.8 to 5.0GHz</td>
<td>0.45 dB</td>
<td>0.80 dB</td>
<td>0.80 dB</td>
<td>0.75 dB</td>
<td>0.50 dB</td>
<td>0.50 dB</td>
<td>0.50 dB</td>
<td>0.50 dB</td>
</tr>
<tr>
<td>5.0 to 6.0GHz</td>
<td>0.50 dB</td>
<td>1.1 dB</td>
<td>1.00 dB</td>
<td>0.55 dB</td>
<td>0.55 dB</td>
<td>0.60 dB</td>
<td>0.65 dB</td>
<td>0.65 dB</td>
</tr>
<tr>
<td>6.0 to 7.2GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7 to 1.0GHz</td>
<td>33 dB</td>
<td>41 dB</td>
<td>39 dB</td>
<td>42 dB</td>
<td>40 dB</td>
<td>55 dB</td>
<td>45 dB</td>
<td>45 dB</td>
</tr>
<tr>
<td>1.0 to 2.2GHz</td>
<td>27 dB</td>
<td>36 dB</td>
<td>33 dB</td>
<td>37 dB</td>
<td>37 dB</td>
<td>52 dB</td>
<td>35 dB</td>
<td>35 dB</td>
</tr>
<tr>
<td>2.2 to 2.7GHz</td>
<td>25 dB</td>
<td>34 dB</td>
<td>29 dB</td>
<td>36 dB</td>
<td>33 dB</td>
<td>51 dB</td>
<td>30 dB</td>
<td>30 dB</td>
</tr>
<tr>
<td>3.4 to 3.8GHz</td>
<td>21 dB</td>
<td>33 dB</td>
<td>27 dB</td>
<td>34 dB</td>
<td>28 dB</td>
<td>51 dB</td>
<td>25 dB</td>
<td>25 dB</td>
</tr>
<tr>
<td>3.8 to 5.0GHz</td>
<td>19 dB</td>
<td>33 dB</td>
<td>25 dB</td>
<td>32 dB</td>
<td>25 dB</td>
<td>44 dB</td>
<td>22 dB</td>
<td>22 dB</td>
</tr>
<tr>
<td>5.0 to 6.0GHz</td>
<td>18 dB</td>
<td>30 dB</td>
<td>32 dB</td>
<td>32 dB</td>
<td>23 dB</td>
<td>37 dB</td>
<td>20 dB</td>
<td>20 dB</td>
</tr>
<tr>
<td>6.0 to 7.2GHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 (26dBm)</td>
<td>-78 dBm</td>
<td>-90 dBm</td>
<td>-75 dBm</td>
<td>-74 dBm</td>
<td>-75 dBm</td>
<td>-78 dBm</td>
<td>-78 dBm</td>
<td>-78 dBm</td>
</tr>
<tr>
<td>H3 (26dBm)</td>
<td>-85 dBm</td>
<td>-90 dBm</td>
<td>-84 dBm</td>
<td>-85 dBm</td>
<td>-95 dBm</td>
<td>-87 dBm</td>
<td>-87 dBm</td>
<td>-87 dBm</td>
</tr>
<tr>
<td>IMD3</td>
<td>-120 dBm</td>
<td>-120 dBm</td>
<td>-120 dBm</td>
<td>-120 dBm</td>
<td>-120 dBm</td>
<td>-125 dBm</td>
<td>-125 dBm</td>
<td>-125 dBm</td>
</tr>
<tr>
<td>Switching time</td>
<td>0.7 us</td>
<td>1.2 us</td>
<td>1 us</td>
<td>1 us</td>
<td>1.5 us</td>
<td>160ns</td>
<td>1 us</td>
<td>1 us</td>
</tr>
</tbody>
</table>

Tel: 86-10-82858804  •  Addr: 5F, HuiZhong Tower 1, No.1 Shangdi 7th Street, Hai Dian District, Beijing
OM8727 5G High Isolation SPDT Switch GPIO Control

Main Features:
- 0.1~6.0 GHz SPDT Switch:
- Switch time: 1 µs
- Insertion loss: 0.65 dB at 4.8-6 GHz
- Isolation: 22 dB at 4.8-6 GHz
- High power handling capacity: +38 dBm
- Capable of 2.8 V operation
- PIN 2 PIN: B**12PL6/B**12SN6/R*1630HP/M**8621S
- DFN6 1.1 × 0.7 × 0.38 mm

Main Applications:
- Multi-mode multi-band 3G/4G/5G handsets
- 5G IoT Modem
- Antenna diversity switching
- 5G Small Cell base station

OM8741M 5G High Power High Isolation SP4T Switch MIPI Control

Main Features:
- 0.1~6.0 GHz SP4T Switch:
- Switch time: 1 µs
- Insertion loss: 0.65 dB at 5 GHz
- Isolation: 20 dB at 5 GHz
- High power handling capacity: 40 dBm
- Capable of 1.8 V operation
- PIN 2 PIN: Q*12114/M**8648M/M**8645M
- 1.1 × 1.1 × 0.40 mm LGA package

Main Applications:
- Multi-mode multi-band 3G/4G/5G handsets
- 5G IoT Modem
- Antenna diversity switching
- 5G Small Cell base station

<table>
<thead>
<tr>
<th>Antenna Switch</th>
<th>HS8727</th>
<th>HS8718-31</th>
<th>OM8719C-06</th>
<th>OM8719C-08</th>
<th>OM8719C-10</th>
<th>OM8719B-10</th>
<th>OM8719C-12</th>
<th>OM8710C-66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>SP2T</td>
<td>SP8T</td>
<td>SP6T</td>
<td>SP8T</td>
<td>SP10T</td>
<td>SP10T</td>
<td>SP12T</td>
<td>DP12T</td>
</tr>
<tr>
<td>Package</td>
<td>1.1x0.7mm</td>
<td>2.0x2.0mm</td>
<td>2.0x2.0mm</td>
<td>2.0x2.0mm</td>
<td>2.4x2.4mm</td>
<td>2.4x2.4mm</td>
<td>2.5x2.5mm</td>
<td>2.4x2.0mm</td>
</tr>
<tr>
<td>Interface</td>
<td>GPIO</td>
<td>GPIO</td>
<td>MIPI 2.0</td>
<td>MIPI 2.0</td>
<td>MIPI 2.0</td>
<td>MIPI 1.0</td>
<td>MIPI 2.0</td>
<td>MIPI 2.0</td>
</tr>
<tr>
<td>Max Power</td>
<td>38 dBm</td>
<td>34 dBm</td>
<td>35 dBm</td>
<td>35 dBm</td>
<td>35 dBm</td>
<td>34 dBm</td>
<td>35 dBm</td>
<td>35 dBm</td>
</tr>
<tr>
<td>Active Current</td>
<td>35 uA</td>
<td>26 uA</td>
<td>35 uA</td>
<td>35 uA</td>
<td>35 uA</td>
<td>35 uA</td>
<td>35 uA</td>
<td>35 uA</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 0.7GHz</td>
<td>0.35 dB</td>
<td>0.40 dB</td>
<td>0.35 dB</td>
<td>0.35 dB</td>
<td>0.35 dB</td>
<td>0.40 dB</td>
<td>0.35 dB</td>
<td>0.35 dB</td>
</tr>
<tr>
<td>Up to 1.8GHz</td>
<td>0.40 dB</td>
<td>0.50 dB</td>
<td>0.45 dB</td>
<td>0.45 dB</td>
<td>0.50 dB</td>
<td>0.50 dB</td>
<td>0.65 dB</td>
<td>0.75 dB</td>
</tr>
<tr>
<td>Up to 2.2GHz</td>
<td>0.45 dB</td>
<td>0.50 dB</td>
<td>0.50 dB</td>
<td>0.55 dB</td>
<td>0.65 dB</td>
<td>0.70 dB</td>
<td>0.75 dB</td>
<td>0.75 dB</td>
</tr>
<tr>
<td>Up to 2.7GHz</td>
<td>0.50 dB</td>
<td>0.60 dB</td>
<td>0.65 dB</td>
<td>0.75 dB</td>
<td>0.80 dB</td>
<td>0.90 dB</td>
<td>0.90 dB</td>
<td>0.55 dB</td>
</tr>
<tr>
<td>Up to 3.8GHz</td>
<td>0.55 dB</td>
<td>0.90 dB</td>
<td>1.00 dB</td>
<td>1.10 dB</td>
<td>1.10 dB</td>
<td>1.10 dB</td>
<td>1.10 dB</td>
<td>0.85 dB</td>
</tr>
<tr>
<td>Up to 6.0GHz</td>
<td>0.65 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 0.7GHz</td>
<td>40 dB</td>
<td>28 dB</td>
<td>45 dB</td>
<td>45 dB</td>
<td>45 dB</td>
<td>40 dB</td>
<td>40 dB</td>
<td>40 dB</td>
</tr>
<tr>
<td>Up to 1.8GHz</td>
<td>32 dB</td>
<td>23 dB</td>
<td>35 dB</td>
<td>35 dB</td>
<td>35 dB</td>
<td>33 dB</td>
<td>35 dB</td>
<td>31 dB</td>
</tr>
<tr>
<td>Up to 2.2GHz</td>
<td>30 dB</td>
<td>23 dB</td>
<td>35 dB</td>
<td>30 dB</td>
<td>32 dB</td>
<td>28 dB</td>
<td>32 dB</td>
<td>30 dB</td>
</tr>
<tr>
<td>Up to 2.7GHz</td>
<td>30 dB</td>
<td>20 dB</td>
<td>30 dB</td>
<td>25 dB</td>
<td>30 dB</td>
<td>24 dB</td>
<td>25 dB</td>
<td>25 dB</td>
</tr>
<tr>
<td>Up to 3.8GHz</td>
<td>26 dB</td>
<td>23 dB</td>
<td>22 dB</td>
<td>25 dB</td>
<td>22 dB</td>
<td>22 dB</td>
<td>22 dB</td>
<td>23 dB</td>
</tr>
<tr>
<td>Up to 6.0GHz</td>
<td>22 dB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 (26dBm)</td>
<td>-72 dBm</td>
<td>-61 dBm</td>
<td>-68 dBm</td>
<td>-69 dBm</td>
<td>-68 dBm</td>
<td>-78 dBm</td>
<td>-70 dBm</td>
<td>-70 dBm</td>
</tr>
<tr>
<td>H3 (26dBm)</td>
<td>-70 dBm</td>
<td>-56 dBm</td>
<td>-72 dBm</td>
<td>-72 dBm</td>
<td>-72 dBm</td>
<td>-63 dBm</td>
<td>-71 dBm</td>
<td>-71 dBm</td>
</tr>
<tr>
<td>IMD3</td>
<td>-105 dBm</td>
<td>-110 dBm</td>
<td>-114 dBm</td>
<td>-112 dBm</td>
<td>-112 dBm</td>
<td>-113 dBm</td>
<td>-113 dBm</td>
<td>-111 dBm</td>
</tr>
<tr>
<td>Switching time</td>
<td>1 us</td>
<td>0.5 us</td>
<td>0.25 us</td>
<td>0.25 us</td>
<td>0.25 us</td>
<td>0.5 us</td>
<td>0.25 us</td>
<td>0.25 us</td>
</tr>
<tr>
<td>ESD</td>
<td>±2000 V</td>
<td>±1000 V</td>
<td>±1000 V</td>
<td>±1000 V</td>
<td>±1000 V</td>
<td>±2000 V</td>
<td>±1000 V</td>
<td>±1000 V</td>
</tr>
</tbody>
</table>
To find out more about why OnMicro has the right solution for your application, contact us today.

**US Office**

Sales:
William Zhong  
1 (609) 454-0017  
william.zhong@onmicro.com.cn

Applications:
Sheldon Xu  
1 (908) 884-3771  
sheldon.xu@onmicro.com.cn

<table>
<thead>
<tr>
<th>Antenna Tuner</th>
<th>OM8775Q-15</th>
<th>OM8775S-15</th>
<th>HS8775C-15</th>
<th>HS8775C-16</th>
<th>HS8765V-15</th>
<th>HS8765V-16</th>
<th>HS8765U-15</th>
<th>HS8765U-16</th>
<th>OM8775C-25</th>
<th>OM8776C-18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>4x SPST</td>
<td>4x SPST</td>
<td>SP4T</td>
<td>SP4T</td>
<td>SP4T</td>
<td>SP4T</td>
<td>SP4T</td>
<td>SP4T</td>
<td>SP4T</td>
<td>SP4T</td>
</tr>
<tr>
<td>Package</td>
<td>1.1x1.5mm</td>
<td>1.1x1.5mm</td>
<td>1.1x1.5mm</td>
<td>1.1x1.5mm</td>
<td>1.1x1.5mm</td>
<td>1.1x1.5mm</td>
<td>1.1x1.5mm</td>
<td>1.1x1.5mm</td>
<td>1.1x1.5mm</td>
<td>1.5x1.5mm</td>
</tr>
<tr>
<td>Interface</td>
<td>MIPI</td>
<td>MIPI</td>
<td>GPIO</td>
<td>GPIO</td>
<td>MIPI</td>
<td>MIPI</td>
<td>MIPI</td>
<td>MIPI</td>
<td>GPIO</td>
<td>GPIO</td>
</tr>
<tr>
<td>Max Power</td>
<td>45 V</td>
<td>45 V</td>
<td>60 V</td>
<td>60 V</td>
<td>45 V</td>
<td>45 V</td>
<td>45 V</td>
<td>45 V</td>
<td>80 V</td>
<td>80 V</td>
</tr>
<tr>
<td>Active Current</td>
<td>110 uA</td>
<td>110 uA</td>
<td>80 uA</td>
<td>80 uA</td>
<td>85 uA</td>
<td>85 uA</td>
<td>85 uA</td>
<td>85 uA</td>
<td>70 uA</td>
<td>71 uA</td>
</tr>
<tr>
<td>R_{on}</td>
<td>1.2 ohm</td>
<td>1.2 ohm</td>
<td>1.0 ohm</td>
<td>1.4 ohm</td>
<td>1.0 ohm</td>
<td>1.4 ohm</td>
<td>1.0 ohm</td>
<td>1.4 ohm</td>
<td>1.0 ohm</td>
<td>1.8 ohm</td>
</tr>
<tr>
<td>C_{ov}</td>
<td>0.12 pf</td>
<td>0.12 pf</td>
<td>0.17 pf</td>
<td>0.13 pf</td>
<td>0.17 pf</td>
<td>0.17 pf</td>
<td>0.13 pf</td>
<td>0.17 pf</td>
<td>0.13 pf</td>
<td>0.12 pf</td>
</tr>
<tr>
<td>Insertion Loss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7 to 1.0GHz</td>
<td>0.25 dB</td>
<td>0.23 dB</td>
</tr>
<tr>
<td></td>
<td>1.0 to 2.2GHz</td>
<td>0.40 dB</td>
<td>0.35 dB</td>
</tr>
<tr>
<td></td>
<td>2.2 to 2.7GHz</td>
<td>0.50 dB</td>
<td>0.45 dB</td>
</tr>
<tr>
<td></td>
<td>3.4 to 3.8GHz</td>
<td>0.90 dB</td>
<td>0.90 dB</td>
<td>1.10 dB</td>
<td>0.90 dB</td>
<td>1.10 dB</td>
<td>0.90 dB</td>
<td>1.10 dB</td>
<td>0.90 dB</td>
<td>0.90 dB</td>
</tr>
<tr>
<td></td>
<td>3.8 to 5.0GHz</td>
<td>1.40 dB</td>
<td>1.20 dB</td>
<td>1.40 dB</td>
<td>1.20 dB</td>
<td>1.40 dB</td>
<td>1.20 dB</td>
<td>1.40 dB</td>
<td>1.20 dB</td>
<td>1.20 dB</td>
</tr>
<tr>
<td></td>
<td>5.0 to 6.0GHz</td>
<td>1.80 dB</td>
<td>1.60 dB</td>
<td>1.80 dB</td>
<td>1.60 dB</td>
<td>1.80 dB</td>
<td>1.60 dB</td>
<td>1.80 dB</td>
<td>1.60 dB</td>
<td>1.60 dB</td>
</tr>
<tr>
<td></td>
<td>6.0 to 7.2GHz</td>
<td>35 dB</td>
<td>35 dB</td>
<td>26 dB</td>
</tr>
<tr>
<td>Isolation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.7 to 1.0GHz</td>
<td>28 dB</td>
<td>28 dB</td>
<td>19 dB</td>
</tr>
<tr>
<td></td>
<td>1.0 to 2.2GHz</td>
<td>26 dB</td>
<td>26 dB</td>
<td>17 dB</td>
<td>17 dB</td>
<td>17 dB</td>
<td>17 dB</td>
<td>17 dB</td>
<td>17 dB</td>
<td>18 dB</td>
</tr>
<tr>
<td></td>
<td>2.2 to 2.7GHz</td>
<td>23 dB</td>
<td>23 dB</td>
<td>13 dB</td>
<td>15 dB</td>
<td>13 dB</td>
<td>15 dB</td>
<td>13 dB</td>
<td>15 dB</td>
<td>15 dB</td>
</tr>
<tr>
<td></td>
<td>3.4 to 3.8GHz</td>
<td>20 dB</td>
<td>20 dB</td>
<td>12 dB</td>
<td>13 dB</td>
<td>12 dB</td>
<td>13 dB</td>
<td>12 dB</td>
<td>13 dB</td>
<td>13 dB</td>
</tr>
<tr>
<td></td>
<td>3.8 to 5.0GHz</td>
<td>18 dB</td>
<td>18 dB</td>
<td>12 dB</td>
</tr>
<tr>
<td></td>
<td>5.0 to 6.0GHz</td>
<td>@35dBm</td>
<td>@35dBm</td>
<td>@80dBm</td>
<td>@80dBm</td>
<td>@80dBm</td>
<td>@80dBm</td>
<td>@80dBm</td>
<td>@80dBm</td>
<td>@80dBm</td>
</tr>
<tr>
<td></td>
<td>6.0 to 7.2GHz</td>
<td>@35dBm</td>
<td>@35dBm</td>
<td>@80dBm</td>
<td>@80dBm</td>
<td>@90dBm</td>
<td>@90dBm</td>
<td>@90dBm</td>
<td>@90dBm</td>
<td>@90dBm</td>
</tr>
<tr>
<td>Harmonics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H2 (26dBm)</td>
<td>-120 dBm</td>
</tr>
<tr>
<td></td>
<td>H3 (26dBm)</td>
<td>3 us</td>
<td>3 us</td>
<td>4.5 us</td>
<td>5.5 us</td>
<td>4.5 us</td>
<td>5.5 us</td>
<td>4.5 us</td>
<td>5.5 us</td>
<td>2.5 us</td>
</tr>
<tr>
<td>IMD3</td>
<td>±2000 V</td>
<td>±2000 V</td>
<td>±1000 V</td>
</tr>
<tr>
<td>Switching time</td>
<td>0.7 us</td>
<td>1.2 us</td>
<td>1 us</td>
<td>1.5 us</td>
<td>160ns</td>
<td>1 us</td>
<td>1 us</td>
<td>1 us</td>
<td>1 us</td>
<td>1 us</td>
</tr>
</tbody>
</table>