

10W Avg Broadband SPDT

FEATURES

- Low insertion loss
 - 0.35dB @ 800MHz
- High isolation
 - o 45dB @ 800MHz
- High Peak Power Handling
- No external DC blocking capacitors on RF lines
- 40dBm CW hot switching capable
- Versatile 2.6-5.25V power supply
- All RF Ports OFF state

APPLICATIONS

- Private Mobile Radio handsets
- Public safety handsets
- Cellular infrastructure
- Small cells
- LTE relays and microcells
- Satellite terminals

DESCRIPTION

The TS7225K is a symmetrical reflective Single Pole Dual Throw (SPDT) switch designed for broadband, high peak power switching applications. Its broadband behavior from DC to 6GHz frequencies makes the TS7225K an excellent switch for all the applications requiring low insertion loss, high isolation and high linearity within a small package size.

The TS7225K is packaged into a compact Quad Flat No lead (QFN) 3x3mm 16 leads plastic package.

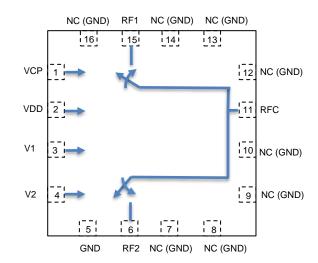


Figure 1: Functional Block Diagram (top view)

ORDERING INFORMATION

Base Part Number	Package Type	Standard Pack		Orderable	
Dase Fait Number		Form	Quantity	Part Number	
TS7225K	QFN 3 mm x 3 mm	Tape and Reel	3000	TS7225KMTRPBF	

PIN DESCRIPTION

PIN NUMBER	PIN NAME	DESCRIPTION	
1	VCP	Input Pin. Connecting a SMD Capacitor (or capacitor in paralle with high value resistor) between this pin and ground enable fast switching time	
2	VDD	DC power supply	
3	V1	Switch control input 1	
4	V2	Switch control input 2	
5	GND	Ground	
6	RF2	RF throw 2	
7	NC	This pin is not connected to internal circuit. Connect to PCB ground plane if needed (e.g. coplanar access line)	
8	NC	This pin is not connected to internal circuit. Connect to PCB grour plane if needed (e.g. coplanar access line)	
9	NC	This pin is not connected to internal circuit. Connect to PCB ground plane if needed (e.g. coplanar access line)	
10	NC	This pin is not connected to internal circuit. Connect to PCB groun plane if needed (e.g. coplanar access line)	
11	RFC	RF Common port	
12	NC	This pin is not connected to internal circuit. Connect to PCB ground plane if needed (e.g. coplanar access line)	
13	NC	This pin is not connected to internal circuit. Connect to PCB grour plane if needed (e.g. coplanar access line)	
14	NC	This pin is not connected to internal circuit. Connect to PCB ground plane if needed (e.g. coplanar access line)	
15	RF1	RF throw 1	
16	NC	This pin is not connected to internal circuit. Connect to PCB ground plane if needed (e.g. coplanar access line)	

The backside ground slug of the package must be grounded directly to the ground plane with vias, to ensure proper operation

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNITS
Power supply voltage	VDD	2.6 to 5.5	V
Storage temperature Range	T _{st}	-55 to +125	°C
Operating Temperature Range	T _{op}	-40 to +85	°C
RF Input power CW, 25degC	RFx	42	dBm
Thermal Resistance (junction to GND slug)	Rtheta	25	°C/W
Junction Temp	Tj	140	°C

Exceeding one or a combination of the Absolute Maximum Ratings conditions may cause permanent damage to the device.

SWITCH TRUTH TABLE

2

V2	V1	RF PATH		
1	0	All OFF state		
0	0	RFC-RF1		
0	1	RFC-RF2		

Note: VDD should be applied first before V1 and V2.

There is an internal pull-down to ground on the V2 control pin: this pin can be left floating when the all OFF state is not used.

If All OFF state is not used, then the switch can be operated with single control line V1.

There is an internal pull-down to ground on the V1 control pin: default switch state at start-up without any control voltage applied will be RFC-RF1 on.

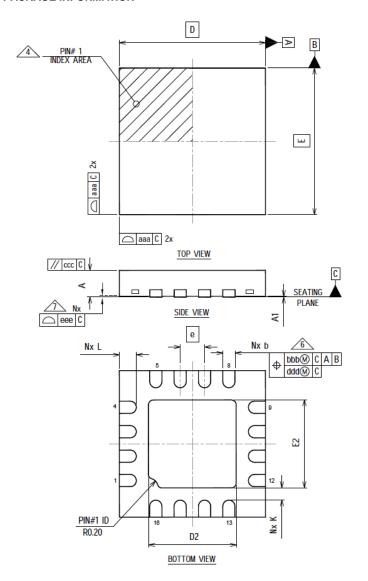
<u>www.tagoretech.com</u> © 2017 Tagore Technology Rev1.7

ELECTRICAL SPECIFICATIONS

Temperature=25°C, VDD=2.7V, 50Ω source and load conditions

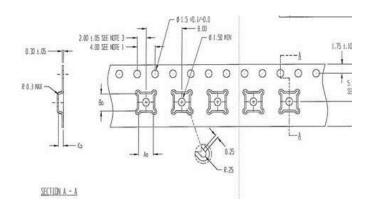
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Operating frequency				6000	MHz
	400MHz		0.25		
	800MHz		0.35	0.45	
Insertion loss	1.95GHz		0.45	0.6	dB
	2.6GHz		0.55	0.7	
	6.0GHz		0.9		
	400MHz		50		
	800MHz	40	45		
Isolation RFC-RFx	1.95GHz	34	35		dB
	2.6GHz	27	32		
	6.0GHz		17		
	400MHz		25		
	800MHz		22		
Return Loss RFC, RFx	1.95GHz		23		dB
-	2.6GHz		18		
	6.0GHz		13		1
Harmonic distortion		•	•	•	
H2	800MHz, Pin=35dBm		-46		dBn
H3	800MHz, Pin=35dBm		-46		dBn
IIP3	800MHz		73		dBn
Peak Power Handling ¹	andling ¹ 800MHz, Pulsed Power		45		dBn
Enhanced Switching Time	50% ctrl to 10/90% of the RF value is settled. C1=1nF(refer to figure 5 schematic)		1.2		μs
P0.1dB ²	0.1dB Compression Point. 800MHz	40	42		dBn
Control voltage	Power Supply VDD	2.6	3.3	5.25	V
	V1, V2 ctrl pins Vih	1.0	3.3	5.25	V
	All control pins Vil	-0.3		0.5	V
Control current	lil, V1 or V2		0		μА
	lih, V1 or V2			7.5	μА
Current consumption	Active mode (VDD On)		225	260	μА

Note 1: 1% Duty Cycle and 10us frame width. Peak P0.1dB


Note 2: P0.1dB is a Figure Of Merit

Note 3: No external DC blocking capacitors required on the RF terminals unless DC voltage is applied on an RF terminal.2

Note 4: This switch supports RF signal hot switching with +40dBm CW input power


Rev1.7

PACKAGE INFORMATION

Dimension Table				
Symbol A	Special V			NOTE
100/	MINIMUM	NOMINAL	MAXIMUM	
Α	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
b	0.20	0.25	0.30	6
D	3.00 BSC			
E		3.00 BSC		
е		0.50 BSC		
D2	1.65	1.80	1.90	
E2	1.65	1.80	1.90	
K	0.20			
L	0.30	0.35	0.40	
aaa		0.05		
bbb		0.10		
CCC	0.10			
ddd	0.05			
eee	0.08			
N	16			3
ND	4			5
NE	4			5
NOTES	1, 2			
LF DWG NO.	B-3490			
REV.	1			

Figure 2: Package drawings

Figure 3: Tape drawing for 3x3mm packages Ao=3.30, Bo=3.30, Ko=1.10

EVALUATION KIT

The board consists of a 4 layer stack with 2 outer layers made of Rogers 4350B (Er = 3.48) and 2 inner layers of FR4 (Er = 4.80). The total thickness of the board is 62 mils (1.57mm). The inner layers provide a ground plane for the 50Ω transmission lines. The thickness between signal and ground plane is 16mils. Each transmission line is designed using coplanar waveguide with ground plane (CPWG) model using a trace width of 32 mils (0.813mm), gap of 15 mils (0.381mm), and a metal thickness of 1.4mils (0.051mm).

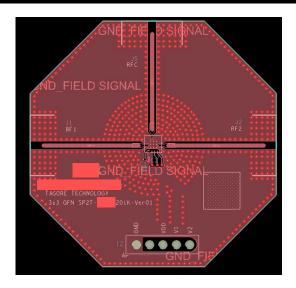


Figure3: Evaluation board Picture (Top layer)

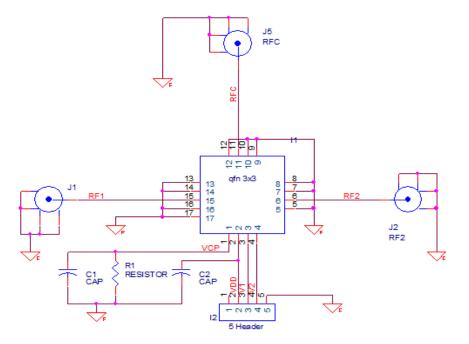


Figure 5: Evaluation board schematic

QUALIFICATION INFORMATION[†]

Qualification Level		Consumer		
Moisture Sensitivity Level		3x3 QFN MSL1		
Human Body Model		Class 1A		
	Charged Device Model	NA		
RoHS Compliant		Yes		

The information provided in this document is believed to be accurate and reliable. However, Tagore Technology assumes no responsibility for the consequences of the use of this information. Tagore Technology assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact Tagore Technology support@tagoretech.com

WORLD HEADQUARTERS:

5 East College Dr. Suite 200, Arlington Heights, IL 60004

www.tagoretech.com © 2017 Tagore Technology