How to Avoid the Wrong Power Supply

1 **INPUT VOLTAGE RANGE**
 Do You Need a Wider Range?
 - Input ranges are determined based on application
 - If range is not wide enough, supply will not operate properly
 - A wide input voltage range will be needed if:
 - There is a high voltage drop causing wide source voltage swings
 - There is a high hold up time required
 - Supply will be used in foreign countries and universal range of 90~264VAC should be used
 - Using a wider voltage range reduces need for several part numbers

2 **POWER FACTOR CORRECTION**
 When to Add PFC
 - Power factor below ideal level for supply
 - More power needed to input
 - PFC can help change perceived power required for a supply
 - Wider input voltage needed
 - PFC can supply universal AC input voltage range of 90~264VAC as well as a fixed DC voltage for supply to operate from
 - Total Harmonic Distortion issues
 - THD causes problems with interface, EMI, and degradation of conductors and insulating materials
 - Non-sinusoidal waveforms that cause THD can be remedied with PFC
 - PFC/THD regulations
 - PFC adds double processing or power resulting in more loss
 - PFC causes more heat from the supply

3 **INRUSH CURRENT**
 What to Remember
 - High current needed at startup to power charging element in supply
 - Max inrush current Set by power supplier- *Do Not Exceed!*
 - An inrush current that is too high can result in disconnect from circuit breaker or shorten the life of the supply
 - If inrush current is too low, any interruption of input voltage will result in quick loss of power
 - If supply has too fast a start up time, energy storage capacity needs to decrease in order to lower inrush current
 - If supply requires a slow startup time, it is much easier to lower inrush current