How to Avoid the Wrong Power Supply

1. **CLEARANCE**
 - Is There Enough Between Supply & Equipment?
 - If there is not enough clearance, power supply may not be able to transfer heat to the surrounding area.
 - If the supply is too close to equipment, noise, heat, and dust can cause failure. Most of these can be remedied by adding extra parts.
 - The best way to avoid failure is to reference the installation manual and make sure there is enough clearance.

2. **SPACE**
 - Considering Size vs. Cost
 - For a given power level, the smaller the supply, the more expensive it will be.
 - A smaller supply may be needed due to size and weight restrictions, but a larger supply may fit budget restrictions.
 - Larger supplies may be better for budget, but the design will need to compensate for the extra size and weight.

3. **DISTANCE BETWEEN SUPPLY, LOAD, & INPUT POWER**
 - Is There Enough? Is a Harness Needed?
 - If supply and load are too close together, shielding and EMI protection could be needed.
 - If there is too much distance, a harness will be needed to connect the supply to the load.
 - Adding a harness will add extra capacitance and inductance to the input.
 - Remember that inductance can cause extra voltage and slow the current change at the input.
 - The type, size, endings and connections of the harness wires will all affect the supply.
 - The harness needs to be placed in a safe place.

4. **COOLING METHOD**
 - Do I Need Active or Passive?
 - The type of cooling needed will be determined by the amount of heat you need to transfer.
 - If a low amount of heat needs to be transferred, passive cooling can be used.
 - Passive cooling includes cooling by conduction (heatsink) or natural convection.
 - Passive cooling is best for supplies that are more efficient and are big enough to transfer heat by air.
 - Active cooling needs to be used in supplies with large level of heat transfer.
 - Active cooling involves elements that are actively cooling the supply (ex: fan) which can transfer heat faster than the passive method.
 - Active cooling results in lower reliability due to moving parts.

5. **HEATSINK**
 - Is One Needed?
 - If supply is designed to be conduction cooled, adding external heatsink can help transfer heat form the supply.
 - Adding a heatsink can extend life of supply.
 - External heatsinks are usually available for supply.
 - Adding a heatsink makes the supply larger and heavier.