How to Avoid the Wrong Power Supply

FOCUS:

LOAD CONDITIONS

1. **Rate of Load Change**
 - **What to Remember**
 - Load change is determined based on application
 - If load change is too slow, there can be a failure in power delivery
 - Slower rate is needed in applications that perform more slowly
 - If load change is too fast, it could result in unnecessary cost
 - Required rate of load change cannot be changed, supply response can only be made faster or slower

2. **Load Type**
 - **Capacitive vs. Inductive vs. Resonant**
 - Load will determine what kind of power supply you'll need
 - **Capacitive Load:**
 - Load is a voltage source
 - Low rate of voltage change
 - Huge overcurrent in short circuit at turn on
 - Works with: Voltage controlled supply, switching power supply, battery, supplies that need open circuit protection
 - **Inductive Load:**
 - Load is inductive (battery charger, electrical motor, solenoid)
 - Slow rate of current change, works well for short circuit
 - High overvoltage in open circuit conditions
 - Works with: Current controlled supply, short circuit protection
 - **Resonant Load:**
 - Resonant tank present
 - Low current and voltage supply can be used
 - Hard to work with open circuit and short circuit
 - Works with: Supply with frequency modulation control

3. **Back EMF**
 - **Do I Need To Protect Against It?**
 - Inductive loads need protection against back EMF
 - EMF occurs when mechanical energy turns to electrical energy & tries to return to supply
 - Electrical energy needs to be stored by capacitor or inductor or dissipated by a resistor
 - Stored energy means less loss & higher efficiency, but circuit will be more complicated
 - Dissipating energy has simpler circuit but high loss & lower efficiency

4. **Output Capacitor**
 - **Is Chosen External Capacitor Correct?**
 - Capacitors decrease voltage ripple of supply and help store output power
 - **Electrolytic** and **Aluminum** capacitors are typically used in older, low switching frequency supplies
 - **Ceramic** and **Polyester** capacitors are typically used in newer, high switching frequency supplies
 - If capacitor is too big, supply could shut down at start up
 - If capacitance is too low, excessive ripple can occur