Silicon Carbide TOLL MOSFETs Enable High Efficiency and High Power Density in 3.6kW Totem-Pole PFC

Yuequan Hu
Manager, Industry Power Applications
Wolfspeed
CONTENTS

1 Introduction and Specifications
2 Topology Selection
3 Power Components and Key Magnetics Selection
4 PCB Layout Considerations
5 Experimental Results
Introduction and Specifications
PFC circuit is a critical stage for power factor correction and low total harmonic distortion

Where they are used: Servers, Data centers, Telecom base station, Mining Power, etc.

Trends:
- High efficiency for 80 PLUS® Platinum/Titanium, OCP3.0, High efficiency 5G for Carbon-Neutral
- High power density
- Lower system cost
Main changes in Generation 2 from Generation 1

- UPS is decentralized: Load sharing and variability across supplies is not required
- Each unit operates at full load
- High efficiency at full load is critical and required
- AC/DC output changed from 12V to 48VDC (efficiency improved by 1%)
> 99% PFC peak efficiency is required for 80 PLUS Titanium applications

Typical Efficiency of Server Power Titanium

<table>
<thead>
<tr>
<th>Load(%)</th>
<th>PFC</th>
<th>DC/DC</th>
<th>Unit Eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>91.18%</td>
<td>94.62%</td>
<td>94.90%</td>
</tr>
<tr>
<td>20%</td>
<td>94.90%</td>
<td>96.20%</td>
<td>97.12%</td>
</tr>
<tr>
<td>40%</td>
<td>99.05%</td>
<td>96.20%</td>
<td>96.20%</td>
</tr>
</tbody>
</table>

80 Plus test type

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Output/Load</th>
<th>115V non-redundant</th>
<th>115V Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Star 3.0</td>
<td>multi</td>
<td>93%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>single ≤ 500W</td>
<td>83%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>single > 1000W</td>
<td>83%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>single > 3000W</td>
<td>83%</td>
<td>90%</td>
</tr>
</tbody>
</table>

80 Plus Platinum

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Output/Load</th>
<th>115V non-redundant</th>
<th>115V Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 9 (1-Mar -2020)</td>
<td>multi</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>single</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Lot 9 (1-Jan -2023)</td>
<td>multi</td>
<td>90%</td>
<td>94%</td>
</tr>
<tr>
<td></td>
<td>single</td>
<td>90%</td>
<td>94%</td>
</tr>
</tbody>
</table>

1. PF not defined under same load as 80 PLUS
2. 100% Load efficiency is 90%, not 91%

https://www.unicomengineering.com/blog/eu-lot-9-update/
OCP3.0 EFFICIENCY CRITERIA

• OCP (Open Compute Project) is an open-design architecture aiming to redesign everything from the data center down to the server to improve energy efficiency, power management, and ease of serviceability.

• Server/datacenter platforms supporting OCP 3.0 are targeting:

 ➢ Power levels > 3kW (with output 48V)
 ➢ High Efficiency (PFC Efficiency Target = ~99%)
 ➢ Small Form Factor
 ➢ Thermally-Efficient Components
 ➢ Lower Cooling Costs
TYPICAL SPEC OF OCP3.0 RECTIFIER

- Input voltage range: 180V-305VAC rms 50Hz/60Hz
- Output power: 3kW
- Output voltage: 48V DC
- Efficiency: 97.5% pk / **96.5%** at 30%-100% load
- Holdup time: 20 ms
- Operating temperature range: 0 – 55°C

❖ >98.5 efficiency for PFC and around 98% efficiency for DC/DC required at full load
❖ >99% efficiency for PFC and >98.5% efficiency for DC/DC required at half load
❖ To meet these requirements (high efficiency and high power density), selection of circuit topology and power components very critical
High efficiency ➢ How to achieve high power density and low profile (overall height: 40mm)?

High power density/Low profile ➢ How to achieve high efficiency and meet thermal requirement?

Thermal management ➢ How to achieve good EMI performance with compact design?

EMI
SPECIFICATION OF REFERENCE DESIGN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage V_{IN}</td>
<td>180-265 VAC RMS, 230V nominal</td>
<td>Power derating needed for low line</td>
</tr>
<tr>
<td>Output Voltage V_{OUT}</td>
<td>420 VDC max.</td>
<td></td>
</tr>
<tr>
<td>Output Power P_{OUT}</td>
<td>3.6 kW max.</td>
<td></td>
</tr>
<tr>
<td>Switching Frequency f_s</td>
<td>60kHz</td>
<td></td>
</tr>
<tr>
<td>Peak Efficiency η</td>
<td>99%</td>
<td>With AUX PSU</td>
</tr>
<tr>
<td>Silicon Carbide MOSFET</td>
<td>*C3M0045065L – HF leg</td>
<td>TOLL package for HF Leg</td>
</tr>
<tr>
<td></td>
<td>C3M0015065D – LF leg</td>
<td>LF can use Si/SiC MOSFET</td>
</tr>
<tr>
<td>Form Factor (W x H x L)</td>
<td>73mm x 40mm x 220mm</td>
<td>Power density: 92W/in3</td>
</tr>
<tr>
<td>Operating Ambient Temperature T_a</td>
<td>-40°C to +45°C</td>
<td>Forced air cooling</td>
</tr>
</tbody>
</table>

Coming Soon
Topology Selection
TARGET PFC TOPOLOGIES OF SERVER SMPS

Traditional PFC Boost

- Appropriate for low power server SMPS targeting lower 80 PLUS efficiency standards (e.g., Silver, Gold)
- Low VF, high reverse blocking voltage and zero reverse recovery of Wolfspeed C6D 650V Schottky enable high efficiency and high-power density

Bridgeless Totem-Pole PFC

- For HF leg, Si-based MOSFET cannot be used due to slow reverse recovery of body diode
- Low Rds(on) over Temp., robust body diode and lower switching losses of Wolfspeed C3M 650V Silicon Carbide MOSFET enable high efficiency and high-power density
- 80 PLUS Titanium efficiency standards can be achieved
WOLFSPEED 3RD GENERATION 650 V SILICON CARBIDE MOSFET TECHNOLOGY

Wolfspeed’s 650 V Silicon Carbide MOSFETs offer the lowest conduction and switching losses in the industry for users who need smaller, lighter, and highly efficient power conversion in their products.

Design benefits include:
- Low Rds(on) Over Temperature
- Low Parasitic Capacitance
- Fast body with ultra low Qrr

Compared with silicon, our 650 V Silicon Carbide MOSFETs enable:
- 75% lower switching losses
- ½ the conduction losses
- 3x higher power density
BLOCK DIAGRAM- HIGH EFFICIENCY DESIGN

- **C3M0045065L**
 - TOLL package C3M™ 650V Silicon Carbide Power MOSFET
- **C3M0015065D**
 - TO-247 package C3M™ 650V Silicon Carbide Power MOSFET
- **UCC5350**
 - 5A, High Voltage, Isolated Gate Driver with Internal Miller Clamp
- **Si8233BB**
 - 4A, 2.5kV Isolated Dual Channel gate Driver
- **TMS320F280049C**
 - C2000 real-time microcontroller MCU with digital control algorithms
- **MAX13256**
 - 36V H-Bridge Transformer Driver for Isolated Supplies

- Daughter cards for high power density and flexibility
- Low-cost low-profile discrete power supply instead of high-cost off-the-shelf ones

Coming soon
DSP offers digital control with powerful computing capability

Flexible control methods can be implemented
Power Components Selection and Daughter Card Design
WOLFSPEED 650 V SILICON CARBIDE POWER MOSFET IN A TOLL (TO LEAD-LESS) PACKAGE

- Low lead inductance enables lower switching losses
- Larger back metal tab enables lower junction temperature
- Ideal for higher switching frequency applications
- 25% smaller footprint as compared to the standard TO-263-7L Package
- Minimum Creepage = 3.15 mm (D-S)
- Ease of automated assembly
- Ideal for ~400VDC applications

Coming Soon!

New TOLL (TO-Leadless) Package
TOLL VS. D2PAK (TO-263-7) QUICK COMPARISONS

- ~ 25% Footprint Reduction
- ~ 50% Height Reduction
- Low Source Inductance
- High Frequency Operation

Drain Tab Area:
- TOLL tab area ~56.3 mm²
- D2Pak-7L tab area ~52.8 mm²

Package Height:
- TOLL Height = 2.20 mm
- D2Pak Height = 4.30 mm

Creepage Distance:
- TOLL 3.5 mm
 (Enough for 650 V Rating)
- D2Pak-7L 7 mm
SYSTEM LEVEL THERMAL PERFORMANCE OF TOLL VS TO-263-7L PACKAGE

<table>
<thead>
<tr>
<th>Thermal Performance</th>
<th>Package</th>
<th>TOLL</th>
<th>TO-263-7L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T_{j_{\text{max}}}$(°C)</td>
<td>152</td>
<td>175</td>
</tr>
</tbody>
</table>

TOLL Package require less thermal management, granting cost, space, and weight benefits to the application.

Power – 28 W

Convection 5000 W/m²K
PRODUCT PORTFOLIO

Wolfspeed 650V SiC MOSFET

R\(_{\text{DS(on)}}\) = 45 m\(\Omega\), 60 m\(\Omega\), and 120 m\(\Omega\)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Qual.</th>
<th>(V_{BR})</th>
<th>(R_{\text{DS(on)}})</th>
<th>(I_D)</th>
<th>Samples</th>
<th>Package options</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3M0045065L</td>
<td>Industrial</td>
<td>650V</td>
<td>45m(\Omega)</td>
<td>50A</td>
<td>Now</td>
<td>TOLL</td>
</tr>
<tr>
<td>C3M0060065L</td>
<td>Industrial</td>
<td>650V</td>
<td>60m(\Omega)</td>
<td>36A</td>
<td>Now</td>
<td>TOLL</td>
</tr>
<tr>
<td>C3M0120065L</td>
<td>Industrial</td>
<td>650V</td>
<td>120m(\Omega)</td>
<td>23A</td>
<td>Now</td>
<td>TOLL</td>
</tr>
</tbody>
</table>

Coming Soon!
HIGH-FREQUENCY HALF-BRIDGE DAUGHTER CARD (30MMX45MMX15MM)

Option A

Adhesive(TIA520R) as TIM for assembling heatsink
- Larger size of heatsink
- One heatsink for HS and LS MOSFET heat dissipation, good to balance the temperature of two MOSFETs
- Additional thermal impedance

- Daughter card for high-frequency leg
- Fully utilize vertical space of power supply
- Increase power density (not taking too much PCB area)
- Easy assembly with double-sided edge connectors
- Quick evaluation of Wolfspeed’s Silicon Carbide MOSFETs
HIGH-FREQUENCY HALF-BRIDGE DAUGHTER CARD (30MMX45MMX15MM)

Daughter Card for High-Frequency Leg
✓ Fully utilize vertical space of power supply
✓ Increase power density (not taking too much valuable PCB area)
✓ Easy assembly with double-sided edge connectors
✓ Quick evaluation of Wolfspeed’s Silicon Carbide MOSFETs

Option B
Directly solder the copper heatsink to PCB
• No additional thermal impedance for TIM between PCB and heatsink
• Separate heatsink for HS and LS MOSFET may cause temperature difference
• The heatsink connected to drain pad of MOSFET (live)
• Difficult to handle high power because of size constraint
THERMAL VIAS FOR HEAT TRANSFER

Via spacing: 0.8mm
Via size: 0.4mm with 2.4mil (60µm) copper plating thickness

- Standard PCB manufacture process
- Cost effective

<table>
<thead>
<tr>
<th>Thermal Impedance</th>
<th>Soldering Heatsink</th>
<th>Adhesive TIM</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\theta,JC}$</td>
<td>0.7</td>
<td>0.7</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\theta,solder}$</td>
<td>0.015</td>
<td>0.015</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\theta,PCB}$</td>
<td>0.45</td>
<td>0.45</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\theta,TIM}$</td>
<td>0.03</td>
<td>0.52</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\theta,HA}$</td>
<td>5.3</td>
<td>3.4</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\theta, total}$</td>
<td>6.5</td>
<td>5.09</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
High Frequency Half-Bridge Power Stage and Gate Drive Circuit

- **UCC5350MC** as gate driver
 - Active miller clamp
 - 5A sink and source current
 - 100V/nS minimum CMTI
- Separate Rg_on and Rg_off to control ON and OFF speed conveniently
GATE DRIVE BIAS CIRCUITS

HF HS Gate Bias

HF/LF LS Gate Bias

LF HS Gate Bias

- +15V/-3V gate power supply voltage
- Separate gate drive power supply for high-side and low-side MOSFETs
- Small surface mount transformer with high frequency enables compact design of daughter card
Key Magnetics Selection
Parameters and Performance Comparison – PFC Choke

<table>
<thead>
<tr>
<th></th>
<th>KH106-060A</th>
<th>KAM106-060A</th>
<th>NPC106060</th>
<th>NPA106060</th>
<th>NPN-LH106060</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Pv(100mT @50kHz)</td>
<td>300kW/m³</td>
<td>200kW/m³</td>
<td>150kW/m³</td>
<td>150kW/m³</td>
<td>200kW/m³</td>
</tr>
<tr>
<td>DC Bias (@100 Oe)</td>
<td>80%</td>
<td>68%</td>
<td>70%</td>
<td>55%</td>
<td>85%</td>
</tr>
<tr>
<td>Frequency Range</td>
<td><200kHz</td>
<td><200kHz</td>
<td><200kHz</td>
<td><300kHz</td>
<td><200kHz</td>
</tr>
<tr>
<td>Vendor</td>
<td>KDM</td>
<td>KDM</td>
<td>POCO</td>
<td>POCO</td>
<td>POCO</td>
</tr>
</tbody>
</table>

- Trade-off between core loss and DC bias
- NPN-LH material selected for its low core loss and best DC bias
- DC bias capability and loss data of POCO can be seen at http://pocomagnetic.com/html/2020/03/02/202003021053158007732711.html
TRANSFORMER FOR GATE BIAS VOLTAGES

Gate drive bias PS with discrete parts

- Low profile (6.35mm vs. 12.5mm, lower height ≤ 4mm achievable)
- Good for airflow
- SM facilitates automated assembly

Off-the-shelf gate drive bias PS

- Tall (12.5mm)
- Great impact on airflow and thermal
- Not suitable for SM/automated assembly
PCB Layout Considerations
HIGH DV/DT NODE AND HIGH DI/DT LOOP

- Keep the sensitive signals far away from the high dv/dt, di/dt trace/nodes
- Keep the sensitive signals far away from the high magnetic field such as PFC inductor.
- Place ceramic or film caps as close as possible to minimize the high frequency di/dt loop.
- Proper PCB layout of the power components to minimize the high frequency di/dt loop.
PARASITIC CAPS OF PCB

\[C = \frac{\varepsilon_r S}{4\pi kd} \]

\[\frac{1}{4\pi k} = 8.85 \times 10^{-12} \text{ F/m} \]

\[\varepsilon_r \text{ of FR4 } \rightarrow 4.3 \]

\[d = 0.0001 \text{ m} \]

For 1 cm \(^2\) PCB trace overlap:

\[C = 4.3 \times 0.01 \times 0.01 \times 8.85 \times 10^{-12} / 0.0001 = 38 \text{ pF} \]

\[P_c = 0.5 \times C \times f \times V^2 = 0.22 \text{ W for 440Vbus hard switching @60 kHz} \]

- Minimize overlapping of traces which can generate undesired power losses
COMPONENTS PLACEMENT FOR MAIN BOARD

- Cooling Fan
- EMI filter and inrush current limit
- Keep output away from input
- Keep control board away from PFC choke
- HF daughter card and LF bridge
- Aux PS and control board

Output Cap 1
Output Cap 2
VDC
COMPONENTS PLACEMENT ON HF DAUGHTER CARD

- Separate gate drive, bias PS from power loop/traces to avoid overlap
- Place the gate drivers near MOSFETs
- No overlap between Drain and Source traces, Drain and Gate to reduce the parasitic capacitance coupling
- Place ceramic caps as close as possible to minimize the high di/dt loop
Experimental results
WOLFSPEED 3.6KW TOTEM-POLE PFC WITH SILICON CARBIDE

Control card with TI DSP
Daughter card with SiC MOSFETs C3M0045065L

Dimension: 220mmX73mmX40mm

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage V_{IN}</td>
<td>180-265 VAC RMS, 230V nominal</td>
<td>Power derating needed for low line</td>
</tr>
<tr>
<td>Output Voltage V_{OUT}</td>
<td>420 VDC max.</td>
<td></td>
</tr>
<tr>
<td>Output Power P_{OUT}</td>
<td>3.6 kW max.</td>
<td></td>
</tr>
<tr>
<td>Switching Frequency f_s</td>
<td>60kHz</td>
<td></td>
</tr>
<tr>
<td>Peak Efficiency η</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td>Silicon Carbide MOSFET</td>
<td>C3M0045065L – HF leg</td>
<td>TOLL package for HF Leg</td>
</tr>
<tr>
<td></td>
<td>C3M0015065D – LF leg</td>
<td></td>
</tr>
<tr>
<td>Form Factor (W x H x L)</td>
<td>73mm x 40mm x 220mm</td>
<td>Power density: 92W/in3</td>
</tr>
<tr>
<td>Operating Ambient Temperature T_a</td>
<td>-40°C to +45°C</td>
<td>Forced air cooling</td>
</tr>
</tbody>
</table>
Over 99% efficiency achieved at half load even with Aux PS
POWER FACTOR AND THD AT 230V INPUT

At nominal input 230V
- PF > 0.96 at 10% load
- PF > 0.99 at half load
- PF > 0.995 at full load

At nominal input 230V
- THD < 10% load
- THD < 4% at half load
- THD < 2% at full load
CAPTURED WAVEFORMS

Test Condition: Vin=230V/50Hz, Vo = 400V, full load

\[v_{in} \]: Input voltage [500V/div]
\[i_{in} \]: Input current [20A/div]
\[i_L \]: Inductor current [20A/div]
CAPTURED SWITCHING WAVEFORMS

Test Condition: Vin=230V/50Hz, Vo = 400V, full load

Gate drive signals within specified limits
THERMAL RESULT (adhesive as TIM)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>180Vac Input 400Vdc output 3600W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High side MOSFET</td>
<td>13.38</td>
<td>82.5</td>
<td>94.27</td>
<td>175</td>
<td>135</td>
<td>Pass</td>
</tr>
<tr>
<td>Low side MOSFET</td>
<td>13.38</td>
<td>85</td>
<td>96.77</td>
<td>175</td>
<td>135</td>
<td>Pass</td>
</tr>
</tbody>
</table>

230Vac Input 400Vdc output 3600W (adhesive as TIM)						
High side MOSFET	8.24	63.5	70.75	175	135	Pass
Low side MOSFET	8.24	62	69.25	175	135	Pass

Balanced thermal
THERMAL RESULT (soldered copper heatsink)

<table>
<thead>
<tr>
<th></th>
<th>Calculated Power loss (Watts)</th>
<th>Measured Case Temp (°C)</th>
<th>Calculated Junction Temp (°C)</th>
<th>Max. Junction Temperature (°C)</th>
<th>Derating Requirement (°C)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>180Vac Input 400Vdc output 3300W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High side MOSFET</td>
<td>13.38</td>
<td>108</td>
<td>117.57</td>
<td>175</td>
<td>135</td>
<td>Pass</td>
</tr>
<tr>
<td>Low side MOSFET</td>
<td>13.38</td>
<td>95.6</td>
<td>105.17</td>
<td>175</td>
<td>135</td>
<td>Pass</td>
</tr>
<tr>
<td>230Vac Input 400Vdc output 3600W (soldered copper heatsink)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High side MOSFET</td>
<td>8.24</td>
<td>83.5</td>
<td>90.75</td>
<td>175</td>
<td>135</td>
<td>Pass</td>
</tr>
<tr>
<td>Low side MOSFET</td>
<td>8.24</td>
<td>67</td>
<td>74.25</td>
<td>175</td>
<td>135</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Unbalanced thermal
SUMMARY

- 80 PLUS Platinum/Titanium efficiency standards require new topologies and advanced power devices to be used for server and data center power supplies.

- A 3.6kW high-efficiency high-power-density Totem-pole PFC with Wolfspeed 650V SiC TOLL devices designed and tested to meet 80 Plus efficiency and OCP form factor requirements.

- A peak efficiency of over 99% at half load and an efficiency of over 98.5% at full load achieved even with Aux PS.

- TOLL package enabled small form factor PCB design with an ease in thermal management.

- Thermal vias with high-performance adhesive proved to be a cost-effective thermal solution.

- Design challenges and general design guidelines introduced in this work.

- Wolfspeed 650V SiC Power MOSFETs in TOLL package has opened the door to high-efficient and high-power-density power supplies.