

 PLC & Go

Introduction

PLC & Go is Microchip’s application note to get started quickly with Power
Line Communications (PLC). PLC & Go implements a basic application
example of low data rate PLC (up to 200 of kbps) using OFDM modulation,
that supports point to point and multi-point communications.

PLC & Go runs a chat application between two or more end points using
Microchip PLC modem boards. The end points in this example are PCs
which are connected via serial interface (USB, UART) to Microchip
evaluation boards acting as PLC modems. Any end point can transmit a
message, which is received by the other end points in the network. The
application example allows end points to configure several PLC parameters
such as modulation type, modulation scheme and band of transmission (in
case of using a Microchip evaluation board that supports several bands of
transmission).

PLC & Go chat application is built on top of the physical layer (PHY) of state-of-the-art standards for PLC, such as
PRIME and G3-PLC. As such, PLC & Go is taking advantage of the speed, robustness and frequency band profiles
defined by the PHY layers of these standards. For the sake of simplicity, PLC & Go removes all advanced networking
features available in the MAC layers of PRIME and G3-PLC. These are not required for the basic point to point / point
to multi-point communication scenarios described in this application note. Microchip does provide full PRIME and G3-
PLC solutions as well, please check Microchip website for more information. For more information about PRIME and
G3-PLC, please check the PRIME Alliance and G3-PLC Alliance websites.

Table 1 below summarizes the Microchip evaluation kits available to run PLC & Go, as well as the communication
profiles and band-plans that can be configured.

Table 1. Microchip Evaluation Kits and Supported Frequency Bands

Microchip Eval Kit Frequency Band Supported PRIME
Profiles

Supported G3 Bandplans

PL360G55CF-EK

[9 … 95 kHz] PRIME v1.4 channel 1 CEN-A (1)

[148,5 … 500 kHz] PRIME v1.4 channels
3,4,5,6,7,8

FCC

ARIB

PL360G55CB-EK [95 … 148,5 kHz] - CEN-B

ATPL360-EK

[9 … 95 kHz] PRIME v1.4 channel 1 CEN-A

[148,5 … 500 kHz] PRIME v1.4 channels
3,4,5,6,7,8

FCC

ARIB

PL485-EK v1 [95 … 148,5 kHz] - CEN-B

Notes: 
1. The hardware of the PL360G55CF-EK board supports several bandplans. The PLC & Go example uses

CENELEC-A bandplan by default.

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 1

Microchip PLC solution is flexible and provides designs optimized for several frequency sub-bands below 500 kHz.
Adopters can decide which band to use based on application’s restrictions and /or communications performance,
which can be affected by different types of noise sources in the PLC channel.

Figure 1 shows the frequency band profiles that G3-PLC and PRIME provide, following european (CENELEC), north-
american (FCC) and japanese (ARIB) regulations.

Figure 1. FCC, ARIB and CENELEC Limits vs PRIME and G3-PLC Bands

Target applications are home and building automation, smart lighting, equipment control over DC lines, solar energy
and alarm systems.

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 2

Table of Contents

Introduction...1

1. Application Example..4

1.1. Initialization...5
1.2. Event Handling...7
1.3. Transmission.. 7
1.4. Reception... 8
1.5. Modifications.. 8

2. Transmission of PLC Messages..9

2.1. Transmission in G3-PLC.. 9
2.2. Transmission in PRIME.. 11

3. Reception of PLC Messages...13

3.1. Reception in G3-PLC... 13
3.2. Reception in PRIME...15

4. PHY Controller.. 17

4.1. G3-PLC PHY Controller... 17
4.2. PRIME PHY Controller...18

5. Appendix A. PHY Layer.. 20

5.1. PL360 Configuration...20
5.2. PL360 Host Controller..20

6. Appendix B. Porting Platform.. 23

7. Revision History.. 24

7.1. Rev A - 02/2020... 24

The Microchip Website...25

Product Change Notification Service..25

Customer Support.. 25

Microchip Devices Code Protection Feature.. 25

Legal Notice... 25

Trademarks.. 26

Quality Management System... 26

Worldwide Sales and Service...27

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 3

1. Application Example
Microchip PLC & Go describes a point to multi-point chat application built on top of the PHY layer of state-of-the-art
PLC protocols such as PRIME and G3-PLC.

The application example is part of the Microchip PLC software deliverables available for download from the Microchip
website. Note that phy_plc_and_go application example can be used with Microchip G3-PLC stack version 1.4.1 or
above, and Microchip PRIME v1.4 stack version 14.03.02 or above, in any Microchip platforms implementing PL360
device as PLC modem.

This application example assumes that a host device (a PC, for example) is connected through a serial interface
(USB, UART) to a Microchip evaluation kit acting as a PLC modem.

Figure 1-1 below provides an example of the minimum hardware and firmware resources required to run PLC & Go.
In this example, two PL360G55CF-EK evaluation kits have been used as PLC modems. Each PL360G55CF-EK
board implements a SAMG55 microcontroller, which executes "PLC & Go" application, and a PL360 modem for
power line communications, which runs the selected PLC physical (PHY) layer.

Figure 1-1. PLC & Go Block Diagram for PL360G55CF-EK Boards

The PLC & Go application interchanges data with the PC through a serial port using a terminal emulator (see figure
Figure 1-2 where terminal emulator TeraTerm is used). The settings of the serial port are: 921600 bps, 8 data bits, no
parity, 1 stop bit and flow control.

When the serial port is opened, the PLC & Go application shows in the console some information about the hardware
platform and the firmware running, and it waits for a message to be sent. The message is sent when a carriage return
character is received or the maximum length of the PLC data message is reached. If the user sends the ASCII
character 0x13 (‘CTRL+S’), a configuration menu is shown.

The PLC & Go application allows to:

• Configure modulation type and modulation scheme
• Configure the band of transmission (in case of using a Microchip evaluation board that supports several bands

of transmission).

In addition, the application provides some information about the transmitted messages (length of the message) and
the received messages (Modulation type and scheme, signal quality), which can be displayed by means of a terminal
emulator in the PC.

Application Example

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 4

Figure 1-2. PLC & Go Console

Upon selection of PRIME or G3-PLC PHY layer, the example PLC & Go is located in the following paths of the
Microchip software packages:

• in case of choosing G3-PLC PHY layer, \thirdparty\g3\phy\atpl360\apps\phy_plc_and_go
• in case of choosing PRIME PHY layer, \thirdparty\prime_ng\phy\atpl360\apps\phy_plc_and_go

The folder contains several subfolders, one for each of the supported Microchip evaluation kits. After selecting the
evaluation kit to work with, it is required to select the subfolder of the IDE and open the project.

As an example, in case of using the evaluation kit PL360G55CF-EK (which uses SAMG55J19 + PL360 as platform),
G3-PLC PHY layer and FCC as working band, the project to use is samg55j19_pl360g55cf_ek located in the
Microchip G3-PLC sorfware package:

• In project properties, the object BOARD must be defined as PL360G55CF_EK
• In conf_atpl360.h, ATPL360_WB value must be ATPL360_WB_FCC

The application functions of the project are in file phy_plc_and_go.c that contains:

• Function main()of the project
• Hardware initialization and management functions
• Timing configuration

The app_phy_ctl.c file contains:

• PLC initialization and configuration functions
• Handlers for received messages, transmission and exception events

The app_console.c file contains the chat application which communicates with the PC using the serial port.

Last but not least, the "PLC Host Controller" and "PHY firmware" blocks shown in Figure 1-1 are common firmware
modules of the Microchip PLC stacks. These firmware modules are described in the section Appendix A. PHY Layer.

1.1 Initialization
In the code of the example project phy_plc_and_go, the initialization of the PLC is performed calling the
phy_ctl_pl360_init() function called in the main() function. This function configures the ATPL360 descriptor
declared in phy_ctl.c and launches the load and initialization of the PL360 firmware binary.

1.1.1 PLC Hardware Initialization
The hardware related to the PLC communication is initialized by atpl360_init() function. This function requires
as parameter a HAL wrapper.

• HAL wrapper contains the functions to interface with the hardware located in sam/services/plc/pplc_if/
atpl360/pplc_if.c

/**
 * \brief Initialization of PL360 PHY Layer.
 *
 */

Application Example

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 5

void phy_ctl_pl360_init(void)
{
 atpl360_dev_callbacks_t x_atpl360_cbs;
 atpl360_hal_wrapper_t x_atpl360_hal_wrp;

 /* Initialize G3 band static variable (ATPL360_WB defined in conf_atpl360.h) */
 suc_phy_band = ATPL360_WB;

 /* Initialize PL360 controller */
 x_atpl360_hal_wrp.plc_init = pplc_if_init;
 x_atpl360_hal_wrp.plc_reset = pplc_if_reset;
 x_atpl360_hal_wrp.plc_set_handler = pplc_if_set_handler;
 x_atpl360_hal_wrp.plc_send_boot_cmd = pplc_if_send_boot_cmd;
 x_atpl360_hal_wrp.plc_write_read_cmd = pplc_if_send_wrrd_cmd;
 x_atpl360_hal_wrp.plc_enable_int = pplc_if_enable_interrupt;
 x_atpl360_hal_wrp.plc_delay = pplc_if_delay;
 atpl360_init(&sx_atpl360_desc, &x_atpl360_hal_wrp);

1.1.2 Callback Setting
The example project defines three callbacks to manage different events:

• Data_indication event is managed by _handler_data_ind() function to process all the PLC messages
received

• Data_confirm event is managed by _handler_dat_cfm() function to process the results of sending a PLC
message

• Exception events are managed by _handler_exception_event() function
• Add-ons event callback is not defined because no Microchip PLC tool is used with this example

/**
 * \brief Initialization of PL360 PHY Layer.
 *
 */
void phy_ctl_pl360_init(void)
{
 atpl360_dev_callbacks_t x_atpl360_cbs;
[…]
 /* Callback functions configuration. Set NULL as Not used */
 x_atpl360_cbs.data_confirm = _handler_data_cfm;
 x_atpl360_cbs.data_indication = _handler_data_ind;
 x_atpl360_cbs.exception_event = _handler_exception_event;
 x_atpl360_cbs.addons_event = NULL;
 sx_atpl360_desc.set_callbacks(&x_atpl360_cbs);

The pointers to the callbacks are stored in the structure x_atpl360_cbs which is used as parameter for
set_callbacks() function.

1.1.3 PL360 Enabling
The binary of PL360 is loaded from flash memory and its integrity is checked.

/**
 * \brief Initialization of PL360 PHY Layer.
 *
 */
void phy_ctl_pl360_init(void)
{
[…]
 /* Enable PL360 device: Load binary */
 _pl360_enable();
}

Application Example

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 6

1.2 Event Handling
To check if there are any pending events from PL360 and manage them, PL360 events handler
atpl360_handle_events() is executed every cycle of the main loop. In this example, it is called inside the
function phy_ctl_process().

/**
 * \brief Phy Controller module process.
 */
void phy_ctl_process(void)
{
 /* Manage PL360 exceptions. At initialization ATPL360_EXCEPTION_RESET is reported */
 if (sb_exception_pend) {
 /* Clear exception flag */
 sb_exception_pend = false;

 /* Set PL360 specific configuration from application */
 /* Called at initialization and if an exception occurs */
 /* If an exception occurs, PL360 is reset and some parameters may have to be
reconfigured */
 _set_pl360_configuration();

 /* Setup G3-PLC parameters to use in transmission */
 _setup_tx_parameters();
 }

 /* Check ATPL360 pending events. It must be called from application periodically to
handle PHY Layer events */
 atpl360_handle_events();
}

This function also checks if any exception related to PLC has been reported.

Note:  Take into account that, during initialization, after loading the firmware binary, a reset of the PL360 is required
to boot up the new firmware which also generates an exception.

1.3 Transmission
In the PLC & Go application, to transmit a message, it is only needed to call the function phy_ctl_send_msg()
passing as parameters the pointer to the data buffer and the data length. The application includes the length of the
message to transmit in the first two bytes of the data buffer so that, at the reception of the message, it is possible to
know the real length of the message.

Any message transmitted by the PL360 requires a header including some transmission parameters. These
parameters and the data are stored in the structure sx_tx_msg which is explained in detail in section 2.
Transmission of PLC Messages.

The PLC & Go application only configures some transmission parameters related to the modulation. The rest of the
parameters required to send a PLC message are defined during the initialization stage in the function
_setup_tx_parameters() called after the event ATPL360_EXCEPTION_RESET triggered after the firmware
binary load as shown in the code below:

static tx_msg_t sx_tx_msg;
[…]
void phy_ctl_process(void)
{
 /* Manage PL360 exceptions. At initialization ATPL360_EXCEPTION_RESET is reported */
 if (sb_exception_pend) {
 /* Clear exception flag */
 sb_exception_pend = false;

 /* Set PL360 specific configuration from application */
 /* Called at initialization and if an exception ocurrs */
 /* If an exception occurs, PL360 is reset and some parameters may have to be
reconfigured */
 _set_pl360_configuration();

 /* Setup G3-PLC parameters to use in transmission */

Application Example

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 7

 _setup_tx_parameters();
 }

 /* Check ATPL360 pending events. It must be called from application periodically to
handle PHY Layer events */
 atpl360_handle_events();
}

The function _setup_tx_parameters() configures the transmission parameters and stores the values in the
structure. It also stores the maximum length of a PLC message returned by the function _get_max_psdu_len()
taking into account the configuration of the transmission.

In case of G3-PLC, the maximum PSDU length depends on the modulation, Reed-Solomon configuration, tone mask
and tone map. These parameters are set in the PL360 by means of the PIB
ATPL360_REG_MAX_PSDU_LEN_PARAMS (0x4043) and then, the PL360 returns the calculated length in the PIB
ATPL360_REG_MAX_PSDU_LEN (0x4042). In case of PRIME, no calculation is done by the PL360 and the values
are directly defined in the function _get_max_psdu_len().

Once the transmission is configured, the function phy_ctl_send_msg() prepares the data to be sent by PLC,
storing the data in the transmission buffer (sx_tx_msg.puc_data_buf) and indicating the length of the data buffer
(sx_tx_msg.us_data_len). When all the information is in the transmission structure, the function
sx_atpl360_desc.send_data(&sx_tx_msg) sends the PLC message.

Due to G3-PLC requirements, before sending the message, the data buffer is accommodated adding some padding
bytes if it is necessary. Zero bit padding is used to fit the encoded bits into a number of OFDM symbols that is a
multiple of 4. In the example, the PL360 is configured to add padding and CRC automatically, enabling PIB
ATPL360_REG_CRC_TX_RX_CAPABILITY (0x401C), only available for the G3-PLC firmware. In case of PRIME, no
padding is required and CRC checking is implemented in the API functions.

1.4 Reception
When a PLC message is received, it is processed in the callback function _handler_data_ind(). This function
receives a structure of type rx_msg_t as a parameter containing all the available data from the message. The
structure is explained in detail in the section 3. Reception of PLC Messages.

The callback function checks if CRC validation was OK, extracts some data about the modulation and signal received
and then, sends the data content to the application function app_console_handle_rx_msg() by means of the
callback function phy_ctl_rx_msg().

The application function app_console_handle_rx_msg() checks the length of the message and sends the
content and information about the signal quality to the host console.

1.5 Modifications
The project example can be easily modified to be adapted to customer point-to-point application. For example:

• If the customer application requires more periodical tasks, they can be directly included in the while() loop of
the main function.

• The communication with the PL360 requires to execute the PHY controller module process as fast as possible
and it is executed in the main loop. Furthermore, a 1 ms timer is defined in TC_1MS_Handler() function to
execute periodical tasks. In this example, it is only used to blink a led, but if the customer tasks require a timer
multiple of 1 ms, new flags can be added in the same way.

• Most of the transmission parameters are set at the initialization stage but, if it is required, they can be modified
dynamically. The example includes modulation changes as an example of how to do it.

• The data_indication handler is able to access all the parameters of the received message but the chat task only
requires some of them. It can be easily modified to pass more or less parameters to the upper layer.

Application Example

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 8

2. Transmission of PLC Messages

2.1 Transmission in G3-PLC
Transmission messages are composed using data structure tx_msg defined in atpl360_comm.h.

/* ! \name G3 Structure defining Tx message */
typedef struct tx_msg {
 uint8_t *puc_data_buf; /* Pointer to data buffer */
 uint32_t ul_tx_time; /* Instant when transmission has to start
referred to 1ms PHY counter */
 uint16_t us_data_len; /* Length of the data buffer */
 uint8_t puc_preemphasis[NUM_SUBBANDS_MAX]; /* Preemphasis for transmission */
 uint8_t puc_tone_map[TONE_MAP_SIZE_MAX]; /* Tone Map to use on transmission */
 uint8_t uc_tx_mode; /* Transmission Mode */
 uint8_t uc_tx_power; /* Power to transmit */
 enum mod_types uc_mod_type; /* Modulation type */
 enum mod_schemes uc_mod_scheme; /* Modulation scheme */
 uint8_t uc_pdc; /* Phase Detector Counter */
 uint8_t uc_2_rs_blocks; /* Flag to indicate whether 2 RS blocks
have to be used (only used for FCC) */
 enum delimiter_types uc_delimiter_type; /* DT field to be used in header */
} tx_msg_t;

Where:
• puc_data_buf: Pointer to the buffer containing the data to transmit
• ul_tx_time: Delay to send the message in ms referred to PL360 internal timer
• us_data_len: length of the data buffer containing the data to transmit
• puc_preemphasis: Attenuation of subbands. Not used
• puc_tone_map: Dynamic notching of carriers in the subband
• uc_tx_mode: Transmission mode

uc_tx_mode Description

TX_MODE_ABSOLUTE The message is sent at the specified time, referred to PL360 internal
timer (1 us). Time defined in ul_tx_time

TX_MODE_RELATIVE The message is sent with a delay referred to the transmission
request time. Delay defined in ul_tx_time

TX_MODE_FORCED Transmission has a higher priority than a reception in progress

TX_MODE_SYNCP_CONTINUOUS Continuous transmission of the preamble. Used for testing

TX_MODE_SYMBOLS_CONTINUOUS Continuous transmission of a message. Used for testing

TX_MODE_CANCEL Cancels the ongoing transmission (started or programmed)

• uc_tx_power: Signal attenuation (3dBs/unit, and 0 means maximum signal level)
• uc_mod_type: Modulation type

uc_mod_type Value Description

MOD_TYPE_BPSK 0 BPSK Modulation

MOD_TYPE_QPSK 1 QPSK Modulation

MOD_TYPE_8PSK 2 8PSK Modulation

MOD_TYPE_BPSK_ROBO 4 BPSK Robust Modulation

• uc_mod_scheme: Modulation scheme

Transmission of PLC Messages

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 9

uc_mod_scheme Value Description

MOD_SCHEME_DIFFERENTIAL 0 Modulation Scheme Differential

MOD_SCHEME_COHERENT 1 Modulation Scheme Coherent

• uc_pdc: Phase detector counter
• uc_2_rs_blocks: Number of Reed-Solomon blocks used (only valid for FCC band).
• uc_delimiter_type: Delimiter type used in the header

uc_delimiter_type Value Description

DT_SOF_NO_RESP 0 Acknowledgment is not requested

DT_SOF_RESP 1 Acknowledgment is requested

DT_ACK 2 Positive acknowledgement

DT_NACK 3 Negative acknowledgement

Once the desired data is in the transmission buffer and the rest of the transmission parameters are completed, the
message can be transmitted using the function send_data defined in the atpl360 descriptor (see section
atpl360_init() function).

Before sending the data, G3-PLC PHY layer requires to accommodate the data to the requirements of G3-PLC
including a padding to fit the encoded bits into a number of OFDM symbols and adding a CRC value. The PL360
firmware binary allows to enable the calculation of the padding and the CRC in the PL360, this functionality is
managed by the PIB ATPL360_REG_CRC_TX_RX_CAPABILITY (0x401C) and it is disabled by default but enabled
in the PLC & Go application.

After sending the message to be transmitted to the PL360 device, a TX data confirm event is triggered indicating the
result of the transmission. This event is managed by the data_confirm callback configured by set_callbacks()
function. This callback receives as parameter a data structure of type tx_cfm_t which is defined in
atpl360_comm.h.

/* ! \name G3 Structure defining result of a transmission */
typedef struct tx_cfm {
 /* RMS_CALC it allows to estimate tx power injected */
 uint32_t ul_rms_calc;
 /* Instant when frame transmission ended referred to 1ms PHY counter */
 uint32_t ul_tx_time;
 /* Tx Result (see "TX Result values" above) */
 enum tx_result_values uc_tx_result;
} tx_cfm_t;

The event returns one of the following transmission result values:
/* ! \name G3 TX Result values */
enum tx_result_values {
 TX_RESULT_SUCCESS = 1, /* ended successfully */
 TX_RESULT_INV_LENGTH = 2, /* invalid length error */
 TX_RESULT_BUSY_CH = 3, /* busy channel error */
 TX_RESULT_BUSY_TX = 4, /* busy in transmission error */
 TX_RESULT_BUSY_RX = 5, /* busy in reception error */
 TX_RESULT_INV_SCHEME = 6, /* invalid modulation scheme error */
 TX_RESULT_TIMEOUT = 7, /* timeout error */
 TX_RESULT_INV_TONEMAP = 8, /* invalid tone map error */
 TX_RESULT_INV_MODTYPE = 9, /* Invalid modulation type error */
 TX_RESULT_INV_DT = 10, /* Invalid delimiter type */
 TX_RESULT_NO_TX = 255, /* No transmission ongoing */
};

Transmission of PLC Messages

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 10

2.2 Transmission in PRIME
Transmission messages are composed using data structure tx_msg defined in atpl360_comm.h.

/* ! \name PRIME Structure defining Tx message */
typedef struct tx_msg {
 uint32_t ul_tx_time; // Time for transmission in us
 uint16_t us_data_len; // Length of the data buffer
 uint8_t uc_att_level; // Attenuation level with which the message must be
transmitted
 enum mod_schemes uc_scheme; // Modulation scheme of last transmitted message
 uint8_t uc_disable_rx; // TX Forced
 enum mode_types uc_mod_type; // Type A, Type B or Type BC
 uint8_t uc_tx_mode; // Transmission Mode
 enum buffer_id uc_buffer_id; // Buffer Id used for transmission
 uint8_t uc_rsvd; // Reserved byte
 uint8_t *puc_data_buf; // Pointer to data buffer
} tx_msg_t;

Where:

• ul_tx_time: Delay to send the message in us. Depending on the transmission mode (uc_tx_mode), it is a
relative or absolute time

• us_data_len: Length of the data to be sent
• uc_att_level: Set transmission attenuation power (1 dB per unit, 0 = maximum signal level)
• uc_scheme: Modulation scheme of the transmitted message

uc_scheme Value Description

MOD_SCHEME_DBPSK 0 Differential BPSK Modulation

MOD_SCHEME_DQPSK 1 Differential QPSK Modulation

MOD_SCHEME_D8PSK 2 Differential 8PSK Modulation

MOD_SCHEME_DBPSK_C 4 Differential BPSK Modulation + Convolutional code

MOD_SCHEME_DQPSK_C 5 Differential QPSK Modulation + Convolutional code

MOD_SCHEME_D8PSK_C 6 Differential 8PSK Modulation + Convolutional code

MOD_SCHEME_R_DBPSK 12 Differential BPSK Robust Modulation

MOD_SCHEME_R_DQPSK 13 Differential BPSK Robust Modulation

• uc_disable_rx: When it is enabled, transmission has a higher priority than a reception in progress
• uc_mod_type: Modulation type of the message (introduced in PRIME 1.4 for backward compatibility with

PRIME 1.3)

uc_mod_type Value Description

MODE_TYPE_A 0 Frame type A

MODE_TYPE_B 2 Frame type B

MODE_TYPE_BC 3 Frame type BC

• uc_tx_mode: Transmission mode

uc_tx_mode Description

TX_MODE_ABSOLUTE The message is sent at the specified time, referred to PL360 internal
timer (1 us). Time defined in ul_tx_time

Transmission of PLC Messages

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 11

...........continued
uc_tx_mode Description

TX_MODE_RELATIVE The message is sent with a delay referred to the transmission
request time. Delay defined in ul_tx_time

TX_MODE_CANCEL Cancels the ongoing transmission (started or programmed)

TX_MODE_PREAMBLE_CONTINUOUS Continuous transmission of the preamble. Used for testing

TX_MODE_SYMBOLS_CONTINUOUS Continuous transmission of a message. Used for testing

• uc_buffer_id: Buffer to store the transmission data. There are two available buffers. But transmissions
cannot be overlapped in time. In that case, TX_BUFFER_0 has priority

uc_buffer_id Description

TX_BUFFER_0 First transmission buffer

TX_BUFFER_1 Second transmission buffer

• uc_rsvd: Reserved
• puc_data_buf: Pointer to the buffer containing the data to transmit. The size of the data is defined in

us_data_len
Once the desired data is in the transmission buffer and the rest of the transmission parameters are completed, the
message can be transmitted using the function send_data defined in the atpl360 descriptor (see section
atpl360_init() function).

After sending the message to be transmitted to the PL360 device, a TX data confirm event is triggered indicating the
result of the transmission. This event is managed by the data_confirm callback configured by set_callbacks()
function. This callback receives as parameter a data structure of type tx_cfm_t which is defined in
atpl360_comm.h.

/* ! \name Structure defining result of a transmission */
typedef struct tx_cfm {
 /** Transmission time in us. */
 uint32_t ul_tx_time;
 /** RMS value emitted */
 uint32_t ul_rms_calc;
 /** Type mode: Type A, Type B or Type BC */
 enum mode_types uc_mod_type;
 /** TX Result */
 enum tx_result_values uc_tx_result;
 /** Buffer Id used for transmission to confirm */
 enum buffer_id uc_buffer_id;
} tx_cfm_t;

The event returns one of the following transmission result values:
/* ! \name TX Result values */
enum tx_result_values {
 TX_RESULT_PROCESS = 0, /* Transmission result: already in process */
 TX_RESULT_SUCCESS = 1, /* Transmission result: ended successfully */
 TX_RESULT_INV_LENGTH = 2, /* Transmission result: invalid length error */
 TX_RESULT_BUSY_CH = 3, /* Transmission result: busy channel error */
 TX_RESULT_BUSY_TX = 4, /* Transmission result: busy in transmission error */
 TX_RESULT_BUSY_RX = 5, /* Transmission result: busy in reception error */
 TX_RESULT_INV_SCHEME = 6, /* Transmission result: invalid modulation scheme error */
 TX_RESULT_TIMEOUT = 7, /* Transmission result: timeout error */
 TX_RESULT_INV_BUFFER = 8, /* Transmission result: invalid buffer identifier error */
 TX_RESULT_INV_MODE = 9, /* Transmission result: invalid Prime Mode error */
 TX_RESULT_INV_TX_MODE = 10, /* Transmission result: invalid transmission mode */
 TX_RESULT_CANCELLED = 11, /* Transmission result: Transmission cancelled */
 TX_RESULT_NO_TX = 255, /* Transmission result: No transmission ongoing */

Transmission of PLC Messages

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 12

3. Reception of PLC Messages

3.1 Reception in G3-PLC
When PL360 receives a message, an event of RX data indication is triggered. This event is managed by the
data_indication callback _handler_data_ind. This callback receives as parameter a data structure of type
rx_msg_t, which is defined in atpl360_comm.h.

/* ! \name G3 Structure defining Rx message */
typedef struct rx_msg {
 uint32_t ul_rx_time;
 uint32_t ul_frame_duration;
 uint16_t us_rssi;
 uint16_t us_data_len;
 uint8_t uc_zct_diff;
 uint8_t uc_rs_corrected_errors;
 enum mod_types uc_mod_type;
 enum mod_schemes uc_mod_scheme;
 uint32_t ul_agc_factor;
 uint16_t us_agc_fine;
 int16_t ss_agc_offset_meas;
 uint8_t uc_agc_active;
 uint8_t uc_agc_pga_value;
 int16_t ss_snr_fch;
 int16_t ss_snr_pay
 uint16_t us_payload_corrupted_carriers;
 uint16_t us_payload_noised_symbols;
 uint8_t uc_payload_snr_worst_carrier;
 uint8_t uc_payload_snr_worst_symbol;
 uint8_t uc_payload_snr_impulsive;
 uint8_t uc_payload_snr_band;
 uint8_t uc_payload_snr_background;
 uint8_t uc_lqi;
 enum delimiter_types uc_delimiter_type;
 uint8_t uc_crc_ok;
 uint8_t puc_tone_map[TONE_MAP_SIZE_MAX];
 uint8_t puc_carrier_snr[PROTOCOL_CARRIERS_MAX];
 uint8_t *puc_data_buf;
} rx_msg_t;

The structure contains all the information available about the message received. The fields of the structure are:

ul_rx_time Instant when frame was received (end of frame) referred to 1µs PHY
counter

ul_frame_duration Frame duration in µs (Preamble + FCH + Payload)

us_rssi Received Signal Strength Indicator in dBµV

us_data_len Length of received frame in bytes

uc_zct_diff Phase difference with transmitting node in multiples of 60 degrees

uc_rs_corrected_errors Number of errors corrected by Reed-Solomon

uc_mod_type Modulation type of the last received frame. Related constants defined in
section 2.1 Transmission in G3-PLC

uc_mod_scheme Modulation scheme of the last received frame. Related Constants defined
in section 2.1 Transmission in G3-PLC

ul_agc_factor Global amplifying factor of the main branch (21 bits)

us_agc_fine Factor that multiplies the digital input signal (13 bits)

ss_agc_offset_meas DC offset after the ADC that will be removed in case the DC Blocker is
enabled (10 bits)

Reception of PLC Messages

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 13

uc_agc_active Flag to indicate if AGC is active

uc_agc_pga_value Gain value applied to the PGA (3 bits)

ss_snr_fch SNR of the header in quarters of dBs

ss_snr_pay SNR of the payload in quarters of dBs

us_payload_corrupted_carriers Number of corrupted carriers in payload due to narrow/broad-band noise

us_payload_noised_symbols Number of corrupted symbols in payload due to impulsive noise

uc_payload_snr_worst_carrier SNR for the worst case carrier of the payload in quarters of dBs

uc_payload_snr_worst_symbol SNR for the worst case symbol of the payload in quarters of dBs

uc_payload_snr_impulsive SNR of corrupted symbols in payload due to impulsive noise in quarters of
dBs

uc_payload_snr_band SNR of corrupted carriers in payload due to narrow/broad-band noise in
quarters of dBs

uc_payload_snr_background SNR without taking into account corrupted carriers and symbols in quarters
of dBs

uc_lqi Link Quality Indicator. SNR in quarters of dBs with offset of 10 dB (value 0
means -10 dB)

uc_delimiter_type DT field coming in header. Related Constants defined in section 2.1
Transmission in G3-PLC

uc_crc_ok CRC verification result (1: OK; 0: BAD; 0xFE: unexpected error; 0xFF:
CRC capability disabled. See PIB
ATPL360_REG_CRC_TX_RX_CAPABILITY (0x401C))

puc_tone_map Tone Map in received frame. Related constants explained below

puc_carrier_snr SNR for each carrier in dBs (with offset of 10dB, i.e. value 0 means
-10dB). Related constants explained below

puc_data_buf Pointer to data buffer containing received frame. The received frame
includes padding (if needed). CRC is included if the CRC capability in the
PL360 is disabled

Related symbolic constants affecting puc_tone_map parameter:

/* ! Subbands for Cenelec-A bandplan */
 #define NUM_SUBBANDS_CENELEC_A 6
/* ! Subbands for FCC bandplan */
 #define NUM_SUBBANDS_FCC 24
/* ! Subbands for ARIB bandplan */
 #define NUM_SUBBANDS_ARIB 18
/* ! Subbands for Cenelec-B bandplan */
 #define NUM_SUBBANDS_CENELEC_B 4
/* ! Tone Map size for Cenelec bandplan */
 #define TONE_MAP_SIZE_CENELEC 1
/* ! Tone Map size for FCC and ARIB bandplans */
 #define TONE_MAP_SIZE_FCC_ARIB 3
/* ! Maximum number of tone map */
 #define TONE_MAP_SIZE_MAX TONE_MAP_SIZE_FCC_ARIB
/* ! Maximum number of subbands */
 #define NUM_SUBBANDS_MAX NUM_SUBBANDS_FCC

Related constants affecting puc_carrier_snr parameter:

/* ! Carriers for CENELEC-A bandplan */
 #define NUM_CARRIERS_CENELEC_A 36
/* ! Carriers for FCC bandplan */
 #define NUM_CARRIERS_FCC 72
/* ! Carriers for ARIB bandplan */

Reception of PLC Messages

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 14

 #define NUM_CARRIERS_ARIB 54
/* ! Carriers for CENELEC-B bandplan */
 #define NUM_CARRIERS_CENELEC_B 16
/* ! Maximum number of protocol carriers */
 #define PROTOCOL_CARRIERS_MAX NUM_CARRIERS_FCC

3.2 Reception in PRIME
When PL360 receives a message, an event of RX data indication is triggered. This event is managed by the
ATPL360 device callback data_indication assigned to _handler_data_ind during the initialization of the
example. This callback receives as parameter a data structure of type rx_msg_t which is defined in
atpl360_comm.h.

/* ! \name Structure defining Rx message */
typedef struct rx_msg {
 uint32_t ul_evm_header_acum;
 uint32_t ul_evm_payload_acum;
 uint32_t ul_rx_time;
 uint16_t us_evm_header;
 uint16_t us_evm_payload;
 uint16_t us_data_len;
 enum mod_schemes uc_scheme;
 enum mode_types uc_mod_type;
 enum header_types uc_header_type;
 uint8_t uc_rssi_avg;
 uint8_t uc_cinr_avg;
 uint8_t uc_cinr_min;
 uint8_t uc_ber_soft;
 uint8_t uc_ber_soft_max;
 uint8_t uc_nar_bnd_percent;
 uint8_t uc_imp_percent;
 uint8_t *puc_data_buf;
} rx_msg_t;

Where:

ul_evm_header_acum Accumulated Error Vector Magnitude for header

ul_evm_payload_acum Accumulated Error Vector Magnitude for payload

ul_rx_time Reception time (start of message) referred to 1us PHY counter

us_evm_header Error Vector Magnitude for header

us_evm_payload Error Vector Magnitude for payload

us_data_len Length of the data buffer in bytes

uc_scheme Modulation scheme of the received message. Related constants defined in section 2.2
Transmission in PRIME

uc_mod_type Type A, Type B or Type BC frames. Related constants defined in section 2.2
Transmission in PRIME

uc_header_type Header Type of the received message

uc_rssi_avg Average RSSI (Received Signal Strength Indication)

uc_cinr_avg Average CNIR (Carrier to Interference + Noise ratio)

uc_cinr_min Minimum CNIR (Carrier to Interference + Noise ratio)

uc_ber_soft Average Soft BER (Bit Error Rate)

uc_ber_soft_max Maximum Soft BER (Bit Error Rate)

uc_nar_bnd_percent Percentage of carriers affected by narrow band noise

uc_imp_percent Percentage of symbols affected by impulsive noise

Reception of PLC Messages

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 15

*puc_data_buf Pointer to local data buffer

Regarding uc_header_type, the PRIME specification defines different types of MAC PDUs for different purposes in
upper layers. In this application, only Generic MAC PDU is used.

uc_header_type Description

PHY_HT_GENERIC Generic PDU are used for all data traffic and most control traffic

PHY_HT_PROMOTION Promotion Needed PDU sent by disconnected nodes

PHY_HT_BEACON Beacon PDU sent by switch devices.

Reception of PLC Messages

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 16

4. PHY Controller
The PHY controller is a C library (app_phy_ctl.c and app_phy_ctl.h) included in the PLC & Go example that
defines a simple API for a point-to-point or point-to-multipoint application (in the case of the example included, a chat
application) simplifying the use of PLC communications with PL360. The API is composed of a series of functions
and callbacks to manage the events coming from the PL360 device.

4.1 G3-PLC PHY Controller
API Callbacks

The callback functions are organized in a structure:

/* Phy Controller API callbacks */
typedef struct phy_ctl_callbacks {
 phy_data_confirm_t phy_ctl_data_confirm;
 phy_data_indication_t phy_ctl_rx_msg;
 phy_data_indication_bad_crc_t phy_ctl_rx_msg_discarded;
 phy_update_tx_cfg_t phy_ctl_update_tx_configuration;
} phy_ctl_callbacks_t;

The phy_ctl_data_confirm callback is executed to manage the event generated after the transmission of a
message sent by the PL360 to notify the result, which is passed as a parameter (See list of events in 2.1
Transmission in G3-PLC).

The phy_ctl_rx_msg callback is executed when a message is received and it passes the checking of the CRC.
The main parameters passed by the callback are the pointer to the data buffer and the length of the data. Other
parameters about signal quality are passed (modulation scheme and type, RSSI and LQI) as example.

The phy_ctl_rx_msg_discarded callback is executed when a corrupted message is received.

The phy_ctl_update_tx_configuration callback is executed when the transmission parameters are
configured. Current modulation scheme, modulation type and maximum data length for a frame are sent as
parameters.

API Functions

The phy_ctl_pl360_init function loads the binary file with the firmware of the PL360 and initializes the callbacks
required by PL360 Host Controller. For G3-PLC, It requires as parameter an identifier of the initial frequency working
band:

/*! \name ATPL360 work band identifiers
 */
/* ! @{ */
/* ! CENELEC A Band Plan (35 - 91 Khz) */
#define ATPL360_WB_CENELEC_A 1
/* ! FCC Band Plan (154 - 488 Khz) */
#define ATPL360_WB_FCC 2
/* ! ARIB Band Plan (154 - 404 Khz) */
#define ATPL360_WB_ARIB 3
/* ! CENELEC-B Band Plan (98 - 122 Khz) */
#define ATPL360_WB_CENELEC_B 4
/* ! @} */

The phy_ctl_set_callbacks function initializes the callbacks required to evaluate the different events coming
from the PLC. The callbacks are listed in the struct phy_ctl_callbacks.

The phy_ctl_process function manages the pending events coming from PLC, this function has to be called
periodically in the main loop of the application.

The phy_ctl_send_msg function sends a message through PLC. This function requires two parameters:
• A pointer to the buffer which contains the message
• Length of the message in bytes

PHY Controller

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 17

This function returns the status of the message:

 TX_RESULT_PROCESS = 0, /* Transmission result: already in process */
 TX_RESULT_INV_LENGTH = 2, /* Transmission result: invalid length error */
 TX_RESULT_NO_TX = 255, /* Transmission result: No transmission ongoing */

The returned value is not the result of the PLC transmission, it is just the transmission of the message from the host
to the PL360. In case of transmission in progress, the status of the PLC transmission (TX_RESULT_PROCESS) is
notified by the callback phy_ctl_Data_confirm.

The phy_ctl_get_mod_scheme returns the modulation scheme used in the transmission.

The phy_ctl_set_mod_scheme changes the modulation scheme configured to be used in the transmission.

The phy_ctl_get_mod_type returns the modulation type used in the transmission.

The phy_ctl_set_mod_type changes the modulation type configured to be used in the transmission.

The phy_ctl_get_band returns the identifier for the selected working band for the PLC transmission.

The phy_ctl_set_band changes the selected working band for the PLC transmission. The identifier of the new
frequency working band is passed as a parameter. When the working band changes, the PL360 transceiver is reset
to load the appropriate firmware (only for G3-PLC Multiband).

4.2 PRIME PHY Controller
API Callbacks

The callbacks functions are organized in a structure:

/* Phy Controller API callbacks */
typedef struct phy_ctl_callbacks {
 phy_data_confirm_t phy_ctl_data_confirm;
 phy_data_indication_t phy_ctl_rx_msg_crc_ok;
 phy_data_indication_bad_crc_t phy_ctl_rx_msg_bad_crc;
 phy_update_tx_cfg_t phy_ctl_update_tx_configuration;
} phy_ctl_callbacks_t;

The phy_ctl_data_confirm callback is executed after the event of the transmission of a message, it is sent by
the PL360 to notify the result. The result of the transmission is passed as a parameter (see list of events in 2.2
Transmission in PRIME).

The phy_ctl_rx_msg_crc_ok callback is executed when a message is received and it passes the checking of the
CRC (calculated by the host device). The main parameters passed by the callback are the pointer to the data buffer
and the length of the data. Other parameters about signal quality are passed (modulation scheme, RSSI and average
CINR).

The phy_ctl_rx_msg_bad_crc callback is executed when a corrupted message is received.

The phy_ctl_update_tx_configuration callback is executed when the transmission parameters are
configured. Current Modulation Scheme and maximum data length for a frame are sent as parameters.

API Functions

The phy_ctl_pl360_init function loads the binary file with the firmware of the PL360 and initializes the callbacks
required by PL360 Host Controller. It requires as parameter the number of the initial frequency working channel (from
1 to 8).

The phy_ctl_set_callbacks function initializes the callbacks required to evaluate the different events coming
from the PLC. The callbacks are listed in the struct phy_ctl_callbacks.

The phy_ctl_process function manages the pending events coming from PLC, this function has to be called
periodically in the main loop of the application.

The phy_ctl_send_msg function sends a message through PLC. This function requires two parameters:
• A pointer to the buffer which contains the message

PHY Controller

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 18

• Length of the message in bytes

This function returns the status of the message:

 TX_RESULT_PROCESS = 0, /* Transmission result: already in process */
 TX_RESULT_INV_LENGTH = 2, /* Transmission result: invalid length error */
 TX_RESULT_NO_TX = 255, /* Transmission result: No transmission ongoing */

The returned value is not the result of the PLC transmission, it is just the transmission of the message from the host
to the PL360. In case of transmission in progress, the status of the PLC transmission (TX_RESULT_PROCESS) is
notified by the callback phy_ctl_Data_confirm.

The phy_ctl_get_mod_scheme returns the modulation scheme used in the transmission.

The phy_ctl_set_mod_scheme changes the modulation scheme configured to be used in the transmission.

The phy_ctl_get_channel returns the number of the selected working channel for the PLC transmission.

The phy_ctl_set_channel changes the selected working channel for the PLC transmission. The number of the
new channel is passed as a parameter.

PHY Controller

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 19

5. Appendix A. PHY Layer
The PHY layer is in charge of frame transmission and reception. The PL360 device runs the PHY layer firmware, thus
data indication and data confirm events are triggered to upper layers by the host controller module. Additionally to
these events, the PHY layer API (through the host controller module) implements entry functions in order to transmit
a frame using the PLC modem, to perform periodic tasks and to access the PHY Information Base (PIB) to read or
write parameters.

To get deeper information about the PHY layer API and how to configure and use it, please check the document
50002738 PL360 Host Controller and the stack user guides (50002728 G3-PLC Firmware stack User Guide for G3-
PLC or 50002759 PRIME 1.4 Firmware stack for Service Node User Guide for PRIME).

5.1 PL360 Configuration
A PLC communication project based on PL360 requires to apply an initial configuration controlled by several PIBs
(Physical Information Base).

Microchip PLC stacks use two ways to configure these parameters:

• Symbolic constants. These are usually hardware related and not modified by the user after compiling the
project. For example: default G3-PLC working band (ATPL360_WB) defines a set of parameters which are
dependent on the frequency band used to communicate via PLC (defined in file conf_atpl360.h).

Symbolic Constant Values Description

ATPL360_WB

ATPL360_WB_CENELEC_A PL360 working in CENELEC-A Band

ATPL360_WB_CENELEC_B PL360 working in CENELEC-B Band

ATPL360_WB_FCC PL360 working in FCC Band

ATPL360_WB_ARIB PL360 working in ARIB Band

• Management primitives. These can be dynamically modified. For example, the impedance detection
(ATPL360_REG_CFG_AUTODETECT_IMPEDANCE) is a functionality that can be enabled/disabled. These
primitives can be modified through the PL360 Host Controller block of the stack.

5.2 PL360 Host Controller
To use the PL360 PHY layer, it is required to configure the PL360 Host Controller API in the host microcontroller
which will be the interface between the user application and the PL360.

This section explains the different steps required during the initialization phase of the system. After powering up the
PL360 device, a set of initialization sequences must be executed in the correct order for the proper operation of the
PL360 device. The steps are the following:

1. Initialize controller descriptor: The PL360 Host Controller is initialized by calling the atpl360_init()
function.

2. Set controller callbacks: The PL360 Host Controller reports PLC events using callback functions. There are 4
callback functions:

– Data indication: reports a new incoming message
– Data confirm: reports the result of the last transmitted message
– Add-on event: reports that a new add-on (PHY tester or PHY sniffer) message is ready to be sent to the

PLC application (for example, an embedded sniffer frame received event)
– Exception event: reports if an exception occurs, such as a reset of the PL360 device

3. Enable controller: The PL360 Host Controller is enabled by calling the atpl360_enable() function in the
API.

4. PL360 event handling: The PL360 device interrupts the host MCU when one or more events are pending in
the PL360 embedded firmware. The host MCU application processes received data and events when the

Appendix A. PHY Layer

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 20

PL360 Host Controller calls the corresponding event callback function(s). In order to receive event callbacks,
the host MCU application is required to periodically call the atpl360_handle_events() function in the API.

5.2.1 atpl360_init() function
This function initializes the hardware parameters and configures the controller descriptor. This function performs the
following actions:

• Sets the handlers for the PLC interruption
• Initializes the PLC SPI service
• And, if necessary, initializes add-on interfaces

The controller descriptor provides a set of functions to access the PL360 device. It is defined in a structure of function
pointers as follows:

/* ATPL360 descriptor */
typedef struct atpl360_descriptor {
 pf_set_callbacks_t set_callbacks;
 pf_send_data_t send_data;
 pf_mng_get_cfg_t get_config;
 pf_mng_set_cfg_t set_config;
 pf_addons_event_t send_addons_cmd;
} atpl360_descriptor_t;

where:

• set_callbacks function is used to set upper layers functions to be executed when a PL360 Host Controller
event has been reported

• send_data function provides a mechanism to send a PLC message through the PL360 device
• get_config function provides a read access method to get PL360 internal data (the list of the available PIBs is

defined in atpl360_reg_id, in atpl360_comm.h)
• set_config function provides a write access method to set PL360 internal data (the list of the available PIBs is

defined in atpl360_reg_id, in atpl360_comm.h)
• send_addons_cmd function provides a mechanism to connect PLC Microchip tools to the PL360 device. All

information received from these tools should be redirected to this function to pass the information to the PL360
Host Controller

The PL360 Host Controller also needs to have access to hardware peripherals. A HAL wrapper structure is used to
define this hardware and software dependency.
/* ATPL360 Hardware Wrapper */
typedef void (*pf_plc_init_t)(void);
typedef void (*pf_plc_reset_t)(void);
typedef void (*pf_plc_set_handler_t)(void (*p_handler)(void));
typedef bool (*pf_plc_bootloader_cmd_t)(uint16_t us_cmd, uint32_t ul_addr, uint32_t
ul_data_len, uint8_t *puc_data_buf, uint8_t *puc_data_read);
typedef bool (*pf_plc_write_read_cmd_t)(uint8_t uc_cmd, void *px_spi_data, void
*px_spi_status_info);
typedef void (*pf_plc_enable_int_t)(bool enable);
typedef void (*pf_plc_delay_t)(uint8_t uc_tref, uint32_t ul_delay);

typedef struct atpl360_hal_wrapper {
 pf_plc_init_t plc_init;
 pf_plc_reset_t plc_reset;
 pf_plc_set_handler_t plc_set_handler;
 pf_plc_bootloader_cmd_t plc_send_boot_cmd;
 pf_plc_write_read_cmd_t plc_write_read_cmd;
 pf_plc_enable_int_t plc_enable_int;
 pf_plc_delay_t plc_delay;
} atpl360_hal_wrapper_t;

5.2.2 setcallbacks() function
This function sets the callbacks for the different PL360 Host Controller events.

Appendix A. PHY Layer

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 21

The structure used as input of pf_set_callbacks_t function contains the pointers to the functions to be executed for
the different PL360 Host Controller events:

/* ATPL360 device Callbacks */
typedef struct atpl360_dev_callbacks {
 /* Callback for TX Data Confirm */
 pf_data_confirm_t data_confirm;
 /* Callback for RX Data Indication */
 pf_data_indication_t data_indication;
 /* Callback for Serial Data Event (see addons) */
 pf_addons_event_t addons_event;
 /* Callback for Exceptions triggered by the component */
 pf_exeption_event_t exception_event;
} atpl360_dev_callbacks_t;

where:

• data_confirm function is used to notify of the result of the last message transmission
• data_indication function is used to notify of the reception of a new message
• addons_event function is used to notify that there is a new message to be sent to a PLC Microchip Tool
• exception_event function is used to notify of any exception which occurs in the communication with the

PL360 device

5.2.3 atpl360_enable() function
The atpl360_enable() function transfers the firmware binary file from Flash memory to the PL360 device and
starts running it. It requires the following parameters:

Parameter Description

ul_binary_address Memory address location of the PL360 firmware binary

ul_binary_len Size of the PL360 firmware binary

This function performs the following actions:

• Disable PLC interrupt
• Transfer firmware binary file to the PL360 device
• Check firmware integrity
• Enable PLC interrupt

The function returns 0 in case of success loading the PL360 binary.

5.2.4 atpl360_handle_events() function
This function provides a mechanism to notify user application about the PL360 Host Controller events by means of
the callbacks previously configured with setcallbacks() function.

It is recommended to call this function either:

• From the main loop or from a dedicated task in the host MCU application, or
• At least once when the host MCU application receives an interrupt from the PL360 embedded firmware

This function checks all PLC events:

• PHY parameters and configuration
• End of transmission of PLC message
• End of reception of PLC message
• Exceptions

After checking the PLC events, it triggers the corresponding PL360 Host Controller callbacks.

Appendix A. PHY Layer

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 22

6. Appendix B. Porting Platform
The example runs in the supported platforms specified in the Release Notes of the Microchip G3-PLC and PRIME
stacks. If it is required to port the code to a new non-supported platform, the most important considerations to bear in
mind are:

• Flash memory: PL360 firmware binary is stored in flash memory in the host device. The new platform must have
enough free flash memory to store the binary.

• SPI bus: Communication with PL360 is made by SPI bus. The PL360 Host Controller uses two different SPI
modes (8-bit mode and 16-bit mode), both of them must be supported in the new platform. Recommended bus
speed is 12 MHz for FCC band and 8 MHz for CENELEC-A and CENELEC-B bands.

• Minimum pinout for PL360-host communication: The communication between PL360 and host device requires:
– SPI: Communication bus between PL360 and host device
– Reset line
– External Interrupt: Line to notify of pending events in the PL360 to be processed. In the host device, an

interrupt associated to this line is required
– Carrier Detect: Only for PRIME stack
– TST line: Only in case of using low-power modes

• Porting hardware-related source code files. The main files to be considered are located in the folders:
– /sam/services/plc/pplc_if/atpl360/
– /common/components/plc/atpl360/

• Memory: It depends on the platform to port the code. Take into account that hardware-related source code files
in the SAMG55 require more than 4 KB of ROM and more than 3 KB in RAM (for more detailed numbers, please
consult map output file in a built example).

Appendix B. Porting Platform

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 23

7. Revision History

7.1 Rev A - 02/2020
Document First issue.

Revision History

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 24

The Microchip Website
Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files
and information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 25

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-5625-4

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 26

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
http://www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Application Note DS00003400A-page 27

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Application Example
	1.1. Initialization
	1.1.1. PLC Hardware Initialization
	1.1.2. Callback Setting
	1.1.3. PL360 Enabling

	1.2. Event Handling
	1.3. Transmission
	1.4. Reception
	1.5. Modifications

	2. Transmission of PLC Messages
	2.1. Transmission in G3-PLC
	2.2. Transmission in PRIME

	3. Reception of PLC Messages
	3.1. Reception in G3-PLC
	3.2. Reception in PRIME

	4. PHY Controller
	4.1. G3-PLC PHY Controller
	4.2. PRIME PHY Controller

	5. Appendix A. PHY Layer
	5.1. PL360 Configuration
	5.2. PL360 Host Controller
	5.2.1. atpl360_init() function
	5.2.2. setcallbacks() function
	5.2.3. atpl360_enable() function
	5.2.4. atpl360_handle_events() function

	6. Appendix B. Porting Platform
	7. Revision History
	7.1. Rev A - 02/2020

	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

