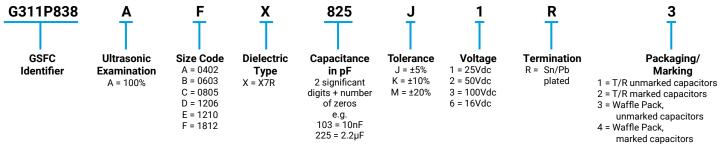

# NASA Space Level BME X7R MLCC





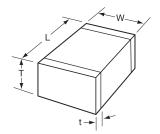



KYOCERA AVX is the first company to be awarded the NASA S311-P838 specification for its Space BME X7R MLCC technology. This technology delivers an advanced capacitance voltage capability compared to conventional PME (Precious Metal Electrode) technologies while meeting the reliability levels demanded by NASA's space industry. The technology has several key benefits, downsizing case sizes, reducing weight and allowing more efficient use of the PCB area available. The range is tested using Mil spec standards and methods including 100% ultrasonic examination in compliance with the NASA space specification. These surface mount components also incorporate Flexiterm®, which greatly enhances resistance to any of the mechanical stress experienced by MLCCs during PCB assembly and in operation.

#### **FEATURES**

- · Higher CV capability than standard capacitors resulting in reduced size / weight of components and saving in PCB space required.
- · Every production lot will have a C of C, DPA and a summary data package.
- Use of Flexiterm® technology for enhanced mechanical stress resistance.
- Case sizes: 0603 1812, cap values 2.2nF 8.2uF available.
- Voltages:16 100 Volts

#### **HOW TO ORDER**




Please note all parts are terminated with a minimum 10% Pb plating.

### **DIMENSIONS**

mm (inches)

| Size          | 06        | 03       | 08        | 05       | 12        | 06       | 12        | 10       | 1812              |         |  |
|---------------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-------------------|---------|--|
|               | Min.      | Max.     | Min.      | Max.     | Min.      | Max.     | Min.      | Max.     | Min.              | Max.    |  |
| (L) Length    | 1.48      | 1.75     | 1.79      | 2.29     | 3.00      | 3.40     | 3.00      | 3.40     | 4.19              | 4.95    |  |
|               | (0.058)   | (0.069)  | (0.070)   | (0.090)  | (0.118)   | (0.134)  | (0.118)   | (0.134)  | (0.165)           | (0.195) |  |
| (W) Width     | 0.66      | 0.97     | 1.01      | 1.45     | 1.40      | 1.80     | 2.25      | 2.70     | 2.79              | 3.56    |  |
|               | 0.026)    | (0.038)  | (0.040)   | (0.057)  | (0.055)   | (0.071)  | (0.088)   | (0.108)  | (0.115)           | (0.140) |  |
| (T) Thickness | 1.02 (0.0 | 40) Max. | 1.52 (0.0 | 60) Max. | 1.80 (0.0 | 71) Max. | 2.80 (0.1 | 10) Max. | 2.80 (0.110) Max. |         |  |
| (t) terminal  | 0.20      | 0.50     | 0.25      | 0.75     | 0.25      | 0.75     | 0.25      | 0.75     | 0.25              | 0.95    |  |
|               | (800.0)   | (0.020)  | (0.010)   | (0.030)  | (0.010)   | (0.030)  | (0.010)   | (0.030)  | (0.010)           | (0.037) |  |



# **NASA Space Level BME X7R MLCC**





## **PREFERRED SIZES ARE SHADED**

| Size Code B (0603) |            |  | C (0805)           |  |  |  | D (1206) |  |  |  | E (1210) |      |   |  | F (1812) |  |   |  |  |      |
|--------------------|------------|--|--------------------|--|--|--|----------|--|--|--|----------|------|---|--|----------|--|---|--|--|------|
| Code               |            |  | 16 v 25 v 50v 100v |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 222                | 2.2 (nF)   |  |                    |  |  |  |          |  |  |  |          | 1001 |   |  |          |  |   |  |  | 1001 |
| 272                | 2.7        |  |                    |  |  |  |          |  |  |  |          |      | ì |  |          |  | ì |  |  |      |
| 332                | 3.3        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 392                | 3.9        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 472                | 4.7        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 562                | 5.6        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 682                | 6.8        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 822                | 8.2        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 103                | 10         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 123                | 12         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 153                | 15         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 183                | 18         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 223                | 22         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 273                | 27         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 333                | 33         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 393                | 39         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 473                | 47         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 563                | 56         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 683                | 68         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 823                | 82         |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 104                | 100        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  | -    |
| 124                | 120        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 154                | 150        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 184                | 180        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 224                | 220        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 274                | 270        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 334<br>394         | 330<br>390 |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 474                | 470        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 564                | 560        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 684                | 680        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 824                | 820        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 105                | 1 uF       |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 125                | 1.2        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 155                | 1.5        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 185                | 1.8        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 225                | 2.2        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 275                | 2.7        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 335                | 3.3        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 395                | 3.9        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 475                | 4.7        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 565                | 5.6        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 685                | 6.8        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 825                | 8.2        |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |
| 106                | 10 uF      |  |                    |  |  |  |          |  |  |  |          |      |   |  |          |  |   |  |  |      |