
# GTRA384802FC

Thermally-Enhanced High Power RF GaN on SiC HEMT 400 W, 48 V, 3600 - 3800 MHz

### **Description**

The GTRA384802FC is a 400-watt ( $P_{3dB}$ ) GaN on SiC high electron mobility transistor (HEMT) for use in multi-standard cellular power amplifier applications. It features input and output matching, high efficiency, and a thermally-enhanced package with earless flange.





#### **Features**

- GaN on SiC HEMT technology
- Asymmetric Doherty design

  - Main: P<sub>3dB</sub> = 200 W typ Peak: P<sub>3dB</sub> = 280 W typ
- Typical pulsed CW performance, 3800 MHz, 48 V, combined outputs, Doherty @  $P_{3dB}$ , 10  $\mu$ s, 10% duty cycle
  - Output power = 400 W
  - Drain efficiency = 62%
  - Gain = 12 dB
- Capable of handling 10:1 VSWR at 48 V, 63 W (WCDMA)output power
- Human Body Model Class 1B (per ANSI/ESDA/ JEDEC JS-001)
- Pb-free and RoHS compliant

#### **RF Characteristics**

Single-carrier WCDMA Specifications (tested in the Doherty test fixture)

 $V_{DD} = 48 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{OUT} = 63 \text{ W avg}, V_{GS(PEAK)} = -6 \text{ V}, f = 3800 \text{ MHz}, channel bandwidth} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ MHz}, peak/average} = 10 \text{ dB} @ 0.01\% \text{ CCDF} = 3.84 \text{ dB} = 3$ 

| Characteristic               | Symbol                        | Min. | Тур. | Max. | Unit |
|------------------------------|-------------------------------|------|------|------|------|
| Gain                         | G <sub>ps</sub>               | 12   | 13   | _    | dB   |
| Drain Efficiency             | $\eta_{\scriptscriptstyle D}$ | 38.5 | 42   | _    | %    |
| Adjacent Channel Power Ratio | ACPR                          | _    | -33  | -29  | dBc  |
| Output PAR @ 0.01% CCDF      | OPAR                          | 7.3  | 7.8  | _    | dB   |

All published data at  $T_{CASE} = 25^{\circ}C$  unless otherwise indicated ESD: Electrostatic discharge sensitive device—observe handling precautions!





#### **DC Characteristics**

| Characteristic                        | Symbol               | Min. | Тур. | Max. | Unit | Conditions                                      |
|---------------------------------------|----------------------|------|------|------|------|-------------------------------------------------|
| Drain-source Breakdown Voltage (main) |                      | 450  |      |      | .,   |                                                 |
| Drain-source Breakdown Voltage (peak) | V <sub>BR(DSS)</sub> | 150  | _    | _    | V    | $V_{GS} = -8 \text{ V, } I_{D} = 10 \text{ mA}$ |
| Drain-source Leakage Current          | I <sub>DSS</sub>     | _    | _    | 5    | mA   | V <sub>GS</sub> = -8 V, V <sub>DS</sub> = 10 V  |
| Gate Threshold Voltage (main)         | .,                   |      |      |      | .,   | $V_{DS} = 10 \text{ V}, I_{D} = 25 \text{ mA}$  |
| Gate Threshold Voltage (peak)         | V <sub>GS(th)</sub>  | -3.8 | -3.0 | -2.3 | V    | $V_{DS} = 10 \text{ V}, I_{D} = 36 \text{ mA}$  |

**Recommended Operating Voltages** 

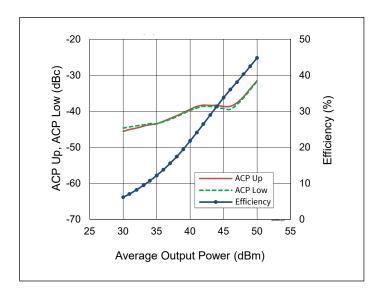
| Parameter               | Symbol          | Min. | Тур. | Max. | Unit | Conditions                                     |
|-------------------------|-----------------|------|------|------|------|------------------------------------------------|
| Drain Operating Voltage | V <sub>DD</sub> | 0    | _    | 50   | .,   |                                                |
| Gate Quiescent Voltage  | $V_{GS(Q)}$     | -3.9 | -2.9 | -2.0 | V    | V <sub>DS</sub> =48 V, I <sub>D</sub> = 250 mA |

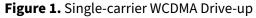
# **Absolute Maximum Ratings**

| Parameter                 | Symbol           | Value       | Unit |
|---------------------------|------------------|-------------|------|
| Drain-source Voltage      | V <sub>DSS</sub> | 125         |      |
| Gate-source Voltage       | V <sub>GS</sub>  | -10 to +2   | V    |
| Operating Voltage         | V <sub>DD</sub>  | 55          |      |
| Gate Current (main)       |                  | 25.2        |      |
| Gate Current (peak)       | I <sub>G</sub>   | 36          | mA   |
| Drain Current (main)      |                  | 9.5         |      |
| Drain Current (peak)      | l I <sub>D</sub> | 13.5        | A    |
| Junction Temperature      | T,               | 225         | 0.0  |
| Storage Temperature Range | T <sub>STG</sub> | -65 to +150 | °C   |

Operation above the maximum values listed here may cause permanent damage. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the component. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. For reliable continuous operation, the device should be operated within the operating voltage range  $(V_{DD})$  specified above.

#### **Thermal Characteristics**


| Parameter                 | Symbol           | Value | Unit   | Conditions                               |
|---------------------------|------------------|-------|--------|------------------------------------------|
| Thermal Resistance (main) | 6                | 1.6   | 0.5.04 | T <sub>CASE</sub> = 70°C, 95 W DC , 48 V |
| Thermal Resistance (peak) | К <sub>өJС</sub> | 1.1   | °C/W   | T <sub>CASE</sub> = 70°C, 141 W DC, 48 V |


# **Ordering Information**

| Type and Version   | Order Code         | Package Description        | Shipping             |
|--------------------|--------------------|----------------------------|----------------------|
| GTRA384802FC V1 R0 | GTRA384802FC-V1-R0 | H-37248C-4, earless flange | Tape & Reel, 50 pcs  |
| GTRA384802FC V1 R2 | GTRA384802FC-V1-R2 | H-37248C-4, earless flange | Tape & Reel, 250 pcs |

# MACOM

### **Typical Performance** (data taken in a the production test fixture)





 $V_{\rm DD}$  = 48 V,  $I_{\rm DQ(MAIN)}$  = 250 mA,  $V_{\rm GS(PEAK)}$  = -6.0V, f = 3800 MHz 3GPP WCDMA signal, 10 dB PAR, 3.84 MHz bandwidth

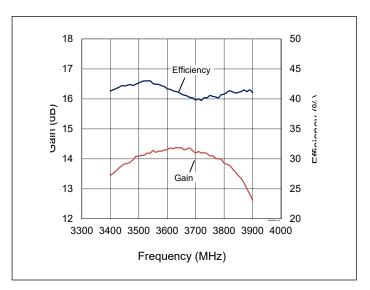



Figure 2. Single-carrier WCDMA Broadband

$$\begin{split} &V_{\text{DD}} = 48 \text{ V, I}_{\text{DQ(MAIN)}} = 250 \text{ mA,} \\ &V_{\text{GS(PEAK)}} = -6.0 \text{V, P}_{\text{OUT}} = 48 \text{ dBm} \\ &3\text{GPP WCDMA signal, 10 dB PAR} \end{split}$$

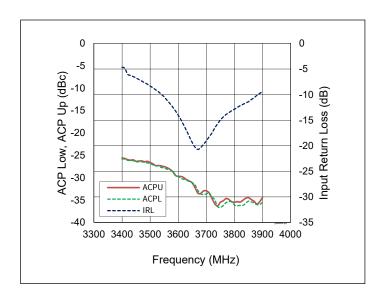
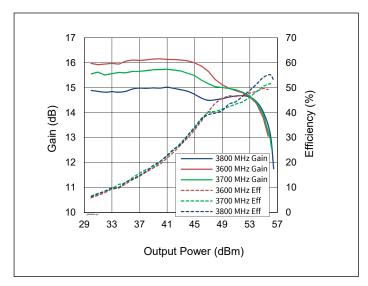
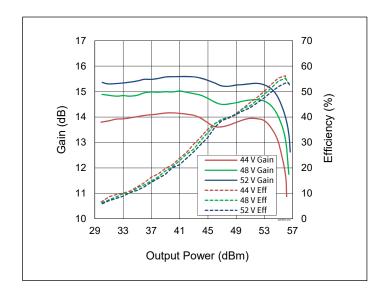
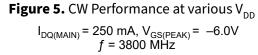



Figure 3. Single-carrier WCDMA Broadband

$$\begin{split} &V_{\rm DD} = 48~V,~I_{\rm DQ(MAIN)} = 250~mA,\\ &V_{\rm GS(PEAK)} = -6.0~V,~P_{\rm OUT} = 48~dBm\\ &3\text{GPP WCDMA signal, }10~dB~PAR \end{split}$$



Figure 4. CW Performance

 $V_{\rm DD} = 48~\rm V,~I_{\rm DQ(MAIN)} = 250~\rm mA, \\ V_{\rm GS(PEAK)} = -6.0~\rm V$ 



# **Typical Performance (cont.)**





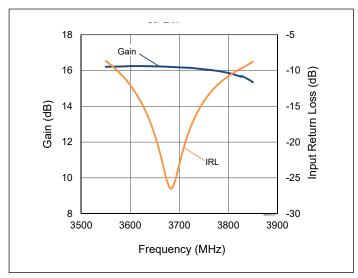


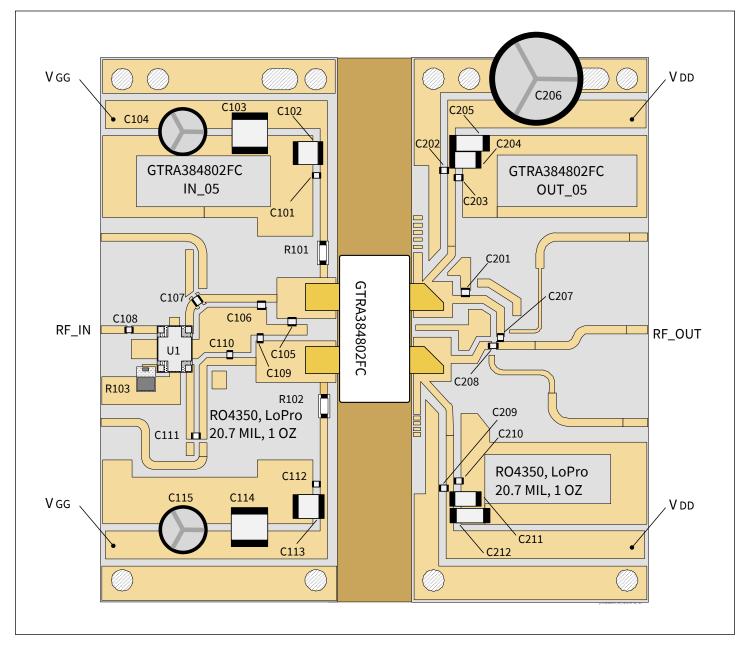

Figure 6. Small Signal CW Gain & Input Return Loss  $V_{DD} = 48 \text{ V}, I_{DO(MAIN)} = 250 \text{ mA},$   $V_{GS(PEAK)} = -6.0 \text{ V}$ 

#### **Load Pull**

Main side load pull performance – pulsed CW signal: 10  $\mu$ sec, 10% duty cycle, 48 V, I $_{DO}$  = 250 mA , class AB

|               |                 |                  | P <sub>3dB</sub> |                           |                      |                   |                      |              |                           |                      |                   |
|---------------|-----------------|------------------|------------------|---------------------------|----------------------|-------------------|----------------------|--------------|---------------------------|----------------------|-------------------|
|               |                 | Max Output Power |                  |                           |                      |                   | Max Drain Efficiency |              |                           |                      |                   |
| Freq<br>[MHz] | $Z_{s}[\Omega]$ | $Z_{l}[\Omega]$  | Gain<br>[dB]     | Р <sub>оит</sub><br>[dBm] | P <sub>OUT</sub> [W] | Efficiency<br>[%] | $Z_{l}[\Omega]$      | Gain<br>[dB] | Р <sub>оит</sub><br>[dBm] | P <sub>OUT</sub> [W] | Efficiency<br>[%] |
| 3600          | 11.2 – j7.4     | 10.2 + j0        | 18.1             | 54.70                     | 295                  | 31.3              | 11.7 – j7            | 17.0         | 48.70                     | 74                   | 57.5              |
| 3700          | 6.2 – j5.7      | 9.5 + j0.9       | 17.6             | 54.60                     | 288                  | 31.3              | 7.5 – j15.6          | 16.0         | 48.10                     | 65                   | 57.5              |
| 3800          | 4.0 – j7.3      | 8.4 + j2         | 17.4             | 54.60                     | 288                  | 31.2              | 16 – j24             | 14.6         | 47.20                     | 52                   | 55.5              |

**Peak side load pull performance –** pulsed CW signal: 10  $\mu$ sec, 10% duty cycle, 48 V, I $_{DQ}$  = 360 mA, class AB


|               |                 |                 | P <sub>3dB</sub> |                           |                      |                   |                 |              |                           |                      |                   |
|---------------|-----------------|-----------------|------------------|---------------------------|----------------------|-------------------|-----------------|--------------|---------------------------|----------------------|-------------------|
|               |                 |                 | Max C            | Output Po                 | wer                  |                   |                 | Max Dr       | ain Efficie               | ency                 |                   |
| Freq<br>[MHz] | $Z_{s}[\Omega]$ | $Z_{l}[\Omega]$ | Gain<br>[dB]     | P <sub>OUT</sub><br>[dBm] | P <sub>OUT</sub> [W] | Efficiency<br>[%] | $Z_{l}[\Omega]$ | Gain<br>[dB] | Р <sub>оит</sub><br>[dBm] | P <sub>OUT</sub> [W] | Efficiency<br>[%] |
| 3600          | 15 – j11.4      | 3 – j8.5        | 15.4             | 55.90                     | 389                  | 57.5              | 1.5 – j7.3      | 18.5         | 54.60                     | 288                  | 67.0              |
| 3700          | 10.8 – j8.8     | 3 – j8.8        | 14.9             | 55.60                     | 363                  | 52.2              | 3 – j7.1        | 15.7         | 55.00                     | 316                  | 61.3              |
| 3800          | 6.7 – j8        | 3 – j8.8        | 15.2             | 55.60                     | 363                  | 56.9              | 1.6 – j7.6      | 17.0         | 53.50                     | 224                  | 61.8              |

https://www.macom.com/support



# Evaluation Board, 3600 - 3800 MHz

| Evaluation Board Part Number | LTA/GTRA384802FC-V1                                                                |
|------------------------------|------------------------------------------------------------------------------------|
| PCB Information              | Rogers 4350, LoPro®, 0.526mm [0.0207"] thick, 1 oz. copper, $\varepsilon_r$ = 3.55 |



Reference circuit assembly diagram (not to scale)

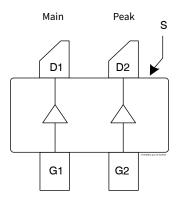


# **Components Information**

| Component                    | Description                  | Manufacturer                     | P/N                 |
|------------------------------|------------------------------|----------------------------------|---------------------|
| Input                        |                              |                                  |                     |
| C101, C107, C108, C111, C112 | Capacitor, 10 pF             | ATC                              | ATC800A100JT250XT   |
| C102, C113                   | Capacitor, 1 μF              | TDK Corporation                  | C4532X7R2A105M230KA |
| C103, C114                   | Capacitor, 10 μF, 100 V      | TDK Corporation                  | C5750X7S2A106M230KB |
| C104, C115                   | Capacitor, 100 μF, 35 V      | Panasonic Electronic Components  | EEE-FT1V101AP       |
| C105, C110                   | Capacitor, 1.2 pF            | ATC                              | ATC800A1R2CT250XT   |
| C106                         | Capacitor, 1.7 pF            | ATC                              | ATC800A1R7CT250XT   |
| C109                         | Capacitor, 0.5 pF            | ATC                              | ATC800A0R5CT250XT   |
| R101, R102                   | Resistor, 5.6 ohms           | Panasonic Electronic Components  | ERJ-8RQJ5R6V        |
| R103                         | Resistor, 50 ohms            | Anaren                           | C8A50Z4A            |
| U1                           | Hybrid coupler               | Anaren                           | XC3500P-03S         |
| Output                       |                              |                                  |                     |
| C201                         | Capacitor, 0.2 pF            | ATC                              | ATC800A0R2CT250XT   |
| C202, C209                   | Capacitor, 1000 pF,<br>100 V | Murata Electronics North America | GRM188R72A102KA01D  |
| C203, C207, C208, C210       | Capacitor, 10 pF             | ATC                              | ATC800A100JT250XT   |
| C204, C211                   | Capacitor, 1 μF              | TDK Corporation                  | C4532X7R2A105M230KA |
| C205, C212                   | Capacitor, 10 μF             | TDK Corporation                  | C5750X7S2A106M230KB |
| C206                         | Capacitor, 220 μF            | Panasonic Electronic Components  | ECA-2AHG221         |



# **Bias Sequencing**


#### **Bias ON**

- 1. Ensure RF is turned off
- 2. Apply pinch-off voltage of -5 V to the gate
- 3. Apply nominal drain voltage
- 4. Bias gate to desired quiescent drain current
- 5. Apply RF

#### **Bias OFF**

- 1. Turn RF off
- 2. Apply pinch-off voltage to the gate
- 3. Turn-off drain voltage
- 4. Turn-off gate voltage

# Pinout Diagram (top view)



# Pin Description

S

- D1 Drain Device 1 (Main)
  D2 Drain Device 2 (Peak)
- G1 Gate Device 1 (Main) G2 Gate Device 2 (Peak)
  - Gate Device 2 (Peak) Source (flange)

Lead connections for GTRA384802FC



# Package Outline Specifications - Package H-37248C-4

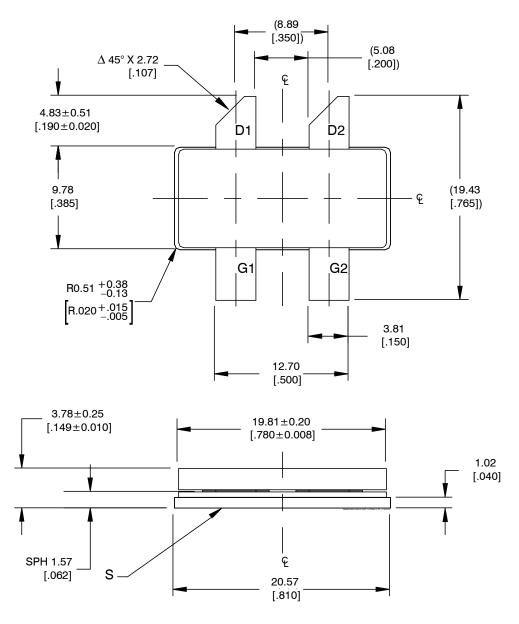



Diagram Notes—unless otherwise specified:

- 1. Interpret dimensions and tolerances per ASME Y14.5M-1994
- 2. Primary dimensions are mm, alternate dimensions are inches
- 3. All tolerances  $\pm 0.127$  [0.005]
- 4. Pins: D1, D2 drain, G1, G2 gate, S source (flange)
- 5. Lead thickness:  $0.13 \pm 0.05 [0.005 \pm 0.002]$
- 6. Gold plating thickness:  $1.14 \pm 0.38$  micron [45 ± 15 microinch]



#### Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.