

Dual, low-offset, low noise operational amplifier

OP227

1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein. The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. http://www.analog.com/aerospace
This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete datasheet for commercial product grades can be found at www.analog.com/OP227

2.0 Part Number. The complete part number(s) of this specification follow:

<u>Part Number</u>	<u>Description</u>
OP227-903Y	Dual, low-offset, low noise operational amplifier
OP227R903Y	Radiation Tested, Dual, low-offset, low noise operational amplifier
OP227-903M	Dual, low-offset, low noise operational amplifier
OP227R903M	Radiation Tested, Dual, low-offset, low noise operational amplifier

2.1 Case Outline.

<u>Letter</u>	<u>Descriptive designator</u>	Case Outline (Lead Finish per MIL-PRF-38535)
Y	GDIP1-T14	14-Lead ceramic dual-in-line package (CERDIP)
M	GDFP1-F14	14-Lead ceramic flat pack (CERPAK)

NOTES:

- 1. Device may be operated even if insertion is reversed; this is due to inherent symmetry of pin locations of amplifiers A and B
- 2. V-(A) and V-(B) are internally connected via substrate resistance.

Figure 1 - <u>Terminal connections</u>.

their respective companies.

OP227

3.0 Absolute Maximum Ratings. 1/

Supply voltage (V)	±22 V dc CC
Input voltage range (V)	±22 V dc IN
Output short circuit duration	Indefinite
Differential input current <u>2/</u>	±25 mA
Differential input voltage range	±0.7 V dc
Lead temperature (soldering, 60 seconds)	+300°C
Storage temperature range	65°C to +150°C
Maximum power dissipation (P _D) <u>3/</u>	

NOTES:

- 1/ Unless otherwise specified, all voltages are referenced to ground.
- 2/ The inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds ±0.7 V, the input current should be limited to 25 mA.
- 3/ For T greater than 106°C, derate linearly at 11.3 mW/°C.

3.1 Thermal Characteristics:

Thermal Resistance, Y (cerdip) Package

Junction-to-Case $(\Theta_{JC}) = 29^{\circ}\text{C/W}$ Max

Junction-to-Ambient $(\Theta_{JA}) = 91^{\circ}\text{C/W}$ Max

Thermal Resistance, M (cerpak) Package

Junction-to-Case $(\Theta_{JC}) = 90^{\circ}\text{C/W}$ Max

Junction-to-Ambient $(\Theta_{JA}) = 150^{\circ}\text{C/W}$ Max

4.0 **Electrical Table**:

		Table I				
Parameter See notes at end of table	Symbol	Conditions Note 1	Sub- group	Limit Min	Limit Max	Units
Input offset voltage	V_{IO}		1 2, 3		80 180	μV
Average input offset drift 2/4/	TCV _{IO}	M, D, L, R	1, 2, 3		160 1.0	μV/°C
Input offset current	I _{IO}		1 2,3		±35 ±50	
CINCIA SERSONALIZADOS SENSOLARIZADAS	10	M, D, L, R	1 1		±120 ±40	nA
Input bias current	$I_{I\!B}$	M, D, L, R	2, 3		±60 ±1200	
Power supply rejection ratio 4/	PSRR	$V_S = \pm 4V \text{ to } \pm 18V$ $V_S = \pm 4.5V \text{ to } \pm 18V$	1 2, 3		10	μV/V
Common mode rejection ratio 4/	CMRR	$V_{\text{CM}} = \pm 11 \text{V}$ $V_{\text{CM}} = \pm 10 \text{V}$	1 2, 3	114 108	10	dB
<u></u>		$V_0 = \pm 10V, R_L = 2K\Omega$	4 5, 6	1000		
Large signal voltage gain	A_{VOL}	M, D, L, R	4 4	500 800		V/mV
Input voltage range 4/	IVR	$V_0 = \pm 10V, R_L = 600\Omega$	1	±11		V
		$RL = 2K\Omega$	2, 3	±10 ±12		
Output voltage swing 4/	Vo	RL = 600Ω	5, 6 4	±11.5 ±10		
Slew rate <u>2/</u> <u>4/</u>	SR	$RL = 2K\Omega$	7	1.7		V/µS
Input noise voltage 4/	e_N	$f_0 = 1 \text{ to } 100\text{Hz}$	7		50	nV_{RMS}
Gain bandwidth product 2/ 4/	GBW	f = 100kHz	7	5.0		MHz
Input offset voltage match 4/	Vos		$\frac{1}{2,3}$		80 180	μV
Average non-inverting bias current 4/	I_B+	3/	2, 3		±40 ±60	nA
Non-inverting offset current 4/	I _{os} +	I_{OS} + = I_B +A - I_B +B	1 2, 3		±60 ±90	
Inverting offset current 4/	I _{os} -	$I_{OS} = I_{B} - A - I_{B} - B$	1 2, 3		±60 ±90	

TABLE I NOTES:

 $\frac{1}{2}$ $V_S = \pm 15V$, unless otherwise specified $\frac{2}{2}$ Guaranteed but not tested.

$$\frac{1}{2}$$
 IB+= $\frac{(I_B + A) + (I_B + B)}{2}$

<u>4/</u> Not tested post irradiation.

4.1 Electrical Test Requirements:

Table II				
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)			
Interim Electrical Parameters	1			
Final Electrical Parameters	1, 2, 3, 4, 5, 6 <u>1/2/</u>			
Group A Test Requirements	1, 2, 3, 4, 5, 6, 7			
Group C end-point electrical parameters	1 <u>2/</u>			
Group D end-point electrical parameters	1			
Group E end-point electrical parameters	1			

- 1/ PDA applies to Subgroup 1. Delta's excluded from PDA.
- 2/ See Table III for delta parameters. See table I for conditions.

4.2 Table III. Burn-in/Life Test delta limits.

		Table III		
TEST	BURN-IN	GROUP C	DELTA	
TITLE	ENDPOINT	ENDPOINT	LIMIT	UNITS
VOS	±80	±180	±100	μV
±ΙΒ	±40	±50	±10	nA

5.0 Life Test/Burn-In Circuit:

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
A	Initiate	July 18, 2000
В	Update web address	Feb. 18, 2002
C	Add note 2 to TCVIO, Guaranteed if not tested, ref SMD 86887	Nov. 22, 2002
D	Update web address. Add note 4 to indicate parameters not test post irradiation	May 13, 2003
Е	Delete burn-in and radiation bias circuits	Aug. 5, 2003
F	Add OP227-903M & OP227R903M versions	Jul. 29, 2004
G	Update header/footer and add to 1.0 Scope description.	Feb. 25, 2008