MRF89XAM8A Data Sheet 868 MHz Ultra-Low Power Sub-GHz Transceiver Module #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specifications contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is secure when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights. - · Microchip is willing to work with any customer who is concerned about the integrity of its code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES. IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. #### **Trademarks** The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2010-2021, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-7944-4 For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality. #### 868 MHz Ultra-Low Power Sub-GHz Transceiver Module #### **Features** - Module designed from the MRF89XA Integrated ultra low-power, sub-GHz transceiver IC. - · Supports proprietary sub-GHz wireless protocols - · Simple, SPI Interface with Interrupts - Small Size: 0.7" x 1.1" (17.8 mm x 27.9 mm), Surface Mountable - Integrated Crystal, Internal Voltage Regulator, Matching Circuitry and Printed Circuit Board (PCB) Antenna - Easy Integration into Final Product Minimize Product Development, Quicker Time to Market - Compatible with Microchip's Microcontroller Families (PIC16, PIC18, PIC24, dsPIC33 and PIC32) - · Conforms to the following ETSI standards: - EN 300 220-2 V2.3.1 (2001-02) - EN 301 489-3 V1.4.1 (2002-08) #### Operational - Operating Voltage: 2.1-3.6V (3.3V typical) - Temperature Range: -40°C to +85°C Industrial - · Low-Current Consumption: - Rx mode: 3 mA (typical) - Tx mode: 25 mA at +10 dBm (typical) - Sleep: 0.1 µA (typical) #### **RF/Analog Features** - 863-870 MHz Operation - · Modulation: FSK and OOK - Data Rate (to conform to ETSI standards): - FSK: 40 kbps - OOK: 16 kbps - Reception sensitivity - FSK: -107 dBm (typical) at 25 kbps - OOK: -113 dBm (typical) at 2 kbps - +10 dBm Typical Output Power with 21 dB Tx Power Control Range # Media Access Controller (MAC)/Baseband Features - Packet handling features with data whitening and automatic CRC generation - · Incoming sync word (pattern) recognition - Built-in bit synchronizer for incoming data, and clock synchronization and recovery - 64-byte transmit/receive FIFO with preload in Stand-by mode - Supports Manchester encoding/decoding techniques #### Pin diagram #### **Table of Contents** | 1.0 | Device Overview | 3 | |-------|---------------------------------|----| | 2.0 | Circuit Description | 9 | | 3.0 | Regulatory Approval | 19 | | 4.0 | Electrical Characteristics | 21 | | Appe | ndix A: Revision History | 27 | | The N | /licrochip Web Site | 29 | | | mer Change Notification Service | | | Custo | omer Support | 29 | | Read | er Response | 30 | | Produ | er Response | 31 | #### TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback. #### **Most Current Data Sheet** To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). #### **Errata** An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: - Microchip's Worldwide Web site; http://www.microchip.com - Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. #### **Customer Notification System** Register on our web site at www.microchip.com to receive the most current information on all of our products. #### 1.0 DEVICE OVERVIEW The MRF89XAM8A is an Ultra Low-Power sub-GHz surface mount transceiver module with integrated crystal, internal voltage regulator, matching circuitry and PCB antenna. The MRF89XAM8A module operates in the European 863–870 MHz frequency band and is ETSI compliant. The integrated module design frees the integrator from extensive RF and antenna design, and regulatory compliance testing, allowing quicker time to market. The MRF89XAM8A module is compatible with Microchip's MiWi™ Development Environment software stacks. The software stacks are available as a free download, including source code, from the Microchip's web site http://www.microchip.com/wireless. The MRF89XAM8A module has been tested and conforms to EN 300 220-2 V2.3.1 (2001–02) and EN 301 489-3 V1.4.1 (2002–08) European Standards. The module tests can be applied toward final product certification and Declaration of Conformity (DoC). To maintain conformance, refer to the module settings in Section 1.3, Operation. Additional testing may be required depending on the end application. #### 1.1 Interface description The simplified block diagram of the MRF89XAM8A module is shown in Figure 1-1. The module is based on the Microchip Technology MRF89XA Ultra Low-Power sub-GHz Transceiver Integrated Circuit (IC). The module interfaces to many popular Microchip PIC® microcontrollers through a 3-wire serial SPI interface, two chip selects (configuration and data), two interrupts Interrupt Request 0 (IRQ0) and Interrupt Request 1 (IRQ1), Reset, Power and Ground as shown in Figure 1-2. Table 1-1 lists the related pin descriptions. Data communication and module configuration are documented in the "MRF89XA Ultra-Low Power, Integrated Sub-GHz Transceiver" (DS70622) Data Sheet. Refer to the "MRF89XA Data Sheet" for specific serial interface protocol and general register definitions and see Section 1.3, Operation for specific register settings that are unique to the MRF89XAM8A module operation to maintain regulatory compliance. TABLE 1-1: PIN DESCRIPTION | Pin | Symbol | Туре | Description | |-----|--------|-------|--| | 1 | GND | Power | Ground | | 2 | RESET | DI | Reset Pin | | 3 | CSCON | DI | Serial Interface Configure Chip Select | | 4 | IRQ0 | DO | Interrupt Request Output | | 5 | SDI | DI | Serial Interface Data Input | | 6 | SCK | DI | Serial Interface Clock | | 7 | SDO | DO | Serial Interface Data Output | | 8 | CSDATA | DI | Serial Interface Data Chip Select | | 9 | IRQ1 | DO | Interrupt Request Output | | 10 | Vin | Power | Power Supply | | 11 | GND | Power | Ground | | 12 | GND | Power | Ground | FIGURE 1-2: MICROCONTROLLER TO MRF89XAM8A INTERFACE #### 1.2 Mounting Details The MRF89XAM8A is a surface mountable module. Module dimensions are shown in Figure 1-3. The module PCB is 0.032" thick with castellated mounting holes on the edge. Figure 1-4 is the recommended host PCB footprint for the MRF89XAM8A. The MRF89XAM8A has an integrated PCB antenna. For the best performance, follow the mounting details shown in Figure 1-5. It is recommended that the module be mounted on the edge of the host PCB and an area around the antenna, approximately 3.4" (8.6 cm), be kept clear of metal objects for best performance. A host PCB ground plane around the MRF89XAM8A acts as a counterpoise to the PCB antenna. It is recommended to extend the ground plane at least 0.4" (1 cm) around the module. FIGURE 1-3: MODULE DETAILS FIGURE 1-4: RECOMMENDED PCB FOOTPRINT FIGURE 1-5: **MOUNTING DETAILS** Keep area around antenna | (approximately 3.4 (6.8 cm) inches) clear of metallic structures 3.4" for best performance Edge of PCB -0.470" 3.4" 0.4" 0.4" Host PCB top copper ground plane (Antenna Counterpoise): extend the L host PCB top copper ground plane under and to the left and right side of the module at least 0.4 inches (1 cm) for best antenna performance. #### 1.3 Operation The MRF89XAM8A module is based on the Microchip Technology MRF89XA Ultra Low-Power, Integrated ISM Band sub-GHz Transceiver IC. Data communication and module configuration are documented in the "MRF89XA Ultra-Low Power, Integrated ISM Band Sub-GHz Transceiver Data Sheet" (DS70622). This section emphasizes operational settings that are unique to the MRF89XAM8A module design that must be followed in order for the module to conform to the tested European Standards that are summarized in Section 3.0, Regulatory Approval. Note: To maintain conformance to tested ETSI standards, the module shall not be modified and settings in Section 1.3, Operation must be observed. #### 1.3.1 RESET Pin 2 of the module, RESET, enables an external reset of the MRF89XA IC. RESET is connected to the TEST8 pin of the MRF89XA IC. During normal operations of the MRF89XAM8A, the RESET pin should be held in a high impedance state. For more information on assertion of the Reset pin, refer to "Section 3.1.2 Manual Reset" of "MRF89XA Data Sheet" (DS70622). #### 1.3.2 CRYSTAL FREQUENCY When calculating frequency deviation, bit rate, receiver bandwidth, and PLL R, P and S values, use crystal frequency f_{xtal} = 12.8 MHz. #### 1.3.3 CLOCK OUTPUT (CLKOUT) The CLKOUT pin 19 of the MRF89XA IC is not used on the module. Ensure that the CLKOUT signal is disabled to minimize the current consumption. ### 1.3.4 FREQUENCY SHIFT KEYING MODULATION (FSK) The following settings must be followed for FSK modulation mode to conform to the European Standards summarized in Section 3.0, Regulatory Approval. - · Bit Rate Maximum Setting: 40 kbps - · Frequency Deviation Maximum Setting: 40 kHz - · Transmit Bandwidth Maximum Setting: 125 kHz - · Lower Frequency Setting: 863.5 MHz - Upper Frequency Setting: 869.5 MHz ### 1.3.5 ON-OFF KEYING MODULATION (OOK) The following settings must be followed for OOK modulation mode to conform to the European Standards summarized in Section 3.0, Regulatory Approval. - · Bit Rate Maximum Setting: 16 kbps - · Frequency Deviation Maximum Setting: 80 kHz - · Transmit Bandwidth Maximum Setting: 125 kHz - · Lower Frequency Setting: 863.4 MHz - Upper Frequency Setting: 869.7 MHz #### 2.0 CIRCUIT DESCRIPTION The MRF89XAM8A module interfaces to Microchip's PIC16, PIC18, PIC24, dsPIC33 and PIC32 microcontrollers with a minimum of external components through digital only connections. An example application schematic is shown in Figure 2-2. #### 2.1 Module Schematic The MRF89XAM8A module is based on the Microchip Technology MRF89XA Ultra-Low Power, Integrated ISM Band sub-GHz Transceiver IC. The serial I/O (CSCON, CSDATA, SCK, SDO and SDI), RESET, IRQ0 and IRQ1 pins are brought to the module pins. Crystal X1 is a 12.8 MHz crystal with a frequency tolerance of ±10 ppm at 25°C. The RFIO output is matched to the SAW filter FL1 and further matched to the PCB trace antenna. Figure 2-2 illustrates the MRF89XAM8A schematics. Table 2-1 lists the Bill of Materials (BOM). FIGURE 2-1: MRF89XAM8A APPLICATION SCHEMATIC TABLE 2-1: MRF89XAM8A BILL OF MATERIALS | Designator | Value | Description | Manufacturer | Part Number | |------------|----------|--|----------------------|---------------------------| | C1 | 0.047 µF | Capacitor, Ceramic, 10V, ±10%, X7R, SMT 0402 | Murata | GRM155R71A473-
KA01D | | C2 | 0.22 μF | Capacitor, Ceramic, 16V, ±10%, X7R, SMT 0402 | Murata | GRM155R71C224-
KA12D | | C3 | 1 μF | Capacitor, Ceramic, 6.3V, ±10%, X5R, SMT 0603 | Murata | GRM188R60J105-
KA01D | | C4 | 22 pF | Capacitor, Ceramic, 50V, ±5%, UHI-Q NP0, SMT 0402 | Johanson Technology | 500R07S220JV4 | | C5 | 1.8 pF | Capacitor, Ceramic, 50V, ±0.1 pF, UHI-Q
NP0, SMT 0402 | Johanson Technology | 500R07S1R8BV4 | | C6 | _ | Designator not used | _ | _ | | C7 | 33 pF | Capacitor, Ceramic, 50V, ±5%, C0G, SMT 0402 | Murata | GRM1555C1H330-
JZ01D | | C8 | 0.1 µF | Capacitor, Ceramic, 16V, ±10%, X7R, SMT 0402 | Murata | GRM155R71C104-
KA88D | | C9 | 680 pF | Capacitor, Ceramic, 50V, ±5%, C0G, SMT 0402 | | | | C10 | 0.01 μF | Capacitor, Ceramic, 16V, ±10%, X7R, SMT 0402 | Murata | GRM155R71C103-
KA01D | | C11 | 4.3 pF | Capacitor, Ceramic, 50V, ±0.1 pF, UHI-Q
NP0, SMT 0402 | Johanson Technology | 500R07S4R3BV4 | | C12 | 1.5 pF | Capacitor, Ceramic, 50V, ±0.1 pF, UHI-Q
NP0, SMT 0402 | Johanson Technology | 500R07S1R5BV4 | | FL1 | TA0801A | Filter, SAW, 863-870 MHz | Tai-saw Technology | TA0801A | | L1 | 8.2 nH | Inductor, Ceramic, ±5%, SMT 0402 | Johanson Technology | L-07C8N2JV6T | | L2 | 100 nH | Inductor, Ceramic, ±5%, SMT 0402 | Johanson Technology | L-07CR10JV6T | | L3 | 6.8 nH | Inductor, Wirewound, ±5%, SMT 0402 | Johanson Technology | L-07W6N8JV4T | | L4 | 6.8 nH | Inductor, Wirewound, ±5%, SMT 0402 | Johanson Technology | L-07W6N8JV4T | | L5 | | Designator not used | | | | L6 | 10 nH | Inductor, Ceramic, ±5%, SMT 0402 | Johanson Technology | L-07C10NJV6T | | R1 | 1 Ω | Resistor, 1%, ±100 ppm/ ⁰ C, SMT 0402 | Vishay/Dale | CRCW04021R00FKE
D | | R2 | 100K Ω | Resistor, 5%, ±100 ppm/ ⁰ C, SMT 0402 | Yageo | RC0402JR-07100KL | | R3 | 6.8K Ω | Resistor, 1%, ±100 ppm/ ⁰ C, SMT 0402 | Yageo | RC0402FR-076K8L | | U1 | MRF89XA | Transceiver, Ultra-Low Power, Integrated sub-GHz | Microchip Technology | MRF89XA-I/MQ | | X1 | 12.8 MHz | Crystal, ±10 ppm, 15 pF, ESR 100 ohms, SMT 5 x 3.2mm | Abracon | ABM3B-155-12.800M
Hz-T | #### 2.2 Printed Circuit Board The MRF89XAM8A module PCB is constructed with high temperature FR4 material, four layers and 0.032 inches thick. The layers are shown in Figure 2-3 through Figure 2-8. The stack up of the PCB is shown in Figure 2-9 FIGURE 2-3: TOP SILK SCREEN FIGURE 2-4: TOP COPPER FIGURE 2-5: LAYER 2 — GROUND PLANE FIGURE 2-6: LAYER 3 — POWER PLANE FIGURE 2-7: BOTTOM COPPER FIGURE 2-8: BOTTOM SILK SCREEN FIGURE 2-9: PCB LAYER STACK UP #### 2.3 PCB Antenna The PCB antenna is fabricated on the top copper trace. Figure 2-11 shows the trace dimensions. The layers below the antenna have no copper traces. The ground and power planes under the components serve as a counterpoise to the PCB antenna. Additional ground plane on the host PCB will substantially enhance the performance of the module. For best performance, place the module on the host PCB by following the recommendations given in Section 1.2, Mounting Details. The PCB antenna is designed and simulated using Ansoft Designer[®] and HFSS™ 3D full-wave solver software by ANSYS, Inc. (www.ansoft.com). The goal of the design is to create a compact, low-cost antenna with the best radiation pattern. Figure 2-11 shows the simulation drawing and Figure 2-12 and Figure 2-13 show the 2D and 3D radiation patterns. As shown by the radiation patterns, the performance of the antenna is dependant upon the orientation of the module. Figure 2-14 shows the impedance simulation and Figure 2-15 shows the simulated PCB antenna VSWR. The discrete matching circuitry matches the impedance of the antenna with the SAW filter and MRF89XA transceiver IC. FIGURE 2-10: PCB ANTENNA DIMENSIONS FIGURE 2-11: PCB ANTENNA SIMULATION DRAWING FIGURE 2-12: SIMULATED 2D RADIATION PATTERN FIGURE 2-13: SIMULATED 3D RADIATION PATTERN FIGURE 2-14: SIMULATED PCB ANTENNA IMPEDANCE **FIGURE 2-15:** SIMULATED PCB ANTENNA VSWR NOTES: #### 3.0 REGULATORY APPROVAL #### 3.1 Europe The MRF89XAM8A modules are Radio Equipment Directive (RED) assessed, CE marked and are manufactured and tested with the intention of being integrated into a final product. The MRF89XAM8A modules are tested to the RED 2014/53/EU Essential Requirements mentioned in the following European Compliance table. TABLE 3-1: EUROPEAN COMPLIANCE | Certification | Standards | Article | |---------------------|--------------|---------| | Safety | EN 62368 | 3.1a | | Health | EN 62311 | | | Electro Magnetic | EN 301 489-1 | 3.1b | | Compatibility (EMC) | EN 301 489-3 | | | Radio | EN 300 220-1 | 3.2 | | | EN 300 220-2 | | The ETSI provides guidance on modular devices in "Guide to the application of harmonized standards covering Article 3.1(b) and Article 3.2 of the Directive 2014/53/EU RED to multi-radio and combined radio and non-radio equipment" document available at http://www.etsi.org/deliver/etsi_eg/203300_203399/203367/01.01.01 60/eg 203367v010101p.pdf Note: To maintain conformance to the testing listed in Table 3-1, the module must be installed in accordance with the installation instructions in this data sheet and shall not be modified. When integrating a radio module into a completed product the integrator becomes the manufacturer of the final product and is therefore responsible for demonstrating compliance of the final product with the essential requirements against RED. ### 3.1.1 LABELING AND USER INFORMATION REQUIREMENTS The label on the final product that contains the MRF89XAM8A modules must follow CE marking requirements. #### 3.1.2 CONFORMITY ASSESSMENT From ETSI Guidance Note EG 203367, section 6.1 Non-radio products are combined with a radio product: If the manufacturer of the combined equipment installs the radio product in a host non-radio product in equivalent assessment conditions (i.e. host equivalent to the one used for the assessment of the radio product) and according to the installation instructions for the radio product, then no additional assessment of the combined equipment against article 3.2 of the RED is required. ### 3.1.2.1 SIMPLIFIED EU DECLARATION OF CONFORMITY Hereby, Microchip Technology Inc. declares that the radio equipment type MRF89XAM8A is in compliance with Directive 2014/53/EU. The full text of the EU declaration of conformity, for this product, is available at: https://www.microchip.com/wwwprod-ucts/en/MRF89XAM8A (available under Documents > Certifications) #### 3.1.3 APPROVED ANTENNAS For MRF89XAM8A, the approval is received using the integral PCB antenna. #### 3.1.4 HELPFUL WEB SITES A document that can be used as a starting point in understanding the use of Short Range Devices (SRD) in Europe is the European Radio Communications Committee (ERC) Recommendation 70-03 E, which can be downloaded from the European Communications Committee (ECC) at: http://www.ecodocdb.dk/ Additional helpful web sites are: - Radio Equipment Directive (2014/53/EU): https://ec.europa.eu/growth/single-market/euro - European Conference of Postal and Telecommunications Administrations (CEPT): http://www.cept.org - European Telecommunications Standards Institute (ETSI): http://www.etsi.org - The Radio Equipment Directive Compliance Association (REDCA): http://www.redca.eu/ NOTES: #### 4.0 ELECTRICAL CHARACTERISTICS #### **Absolute Maximum Ratings** | Ambient temperature under bias | 40°C to +85°C | |---|----------------------| | Storage temperature | 55°C to +125°C | | Voltage on VIN with respect to Vss | 0.3V to 6V | | Voltage on any combined digital and analog pin with respect to Vss (except VIN) | 0.3V to (VIN + 0.3V) | | Input current into pin (except VIN and VSS) | 25 mA to 25 mA | | Electrostatic discharge with human body model | 1000V | **NOTICE:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. TABLE 4-1: RECOMMENDED OPERATING CONDITIONS | Parameter | Min | Тур | Max | Unit | Condition | |---|-----------|-----|-----------|------|-----------| | Ambient Operating Temperature | -40 | _ | +85 | °C | _ | | Supply Voltage for RF, Analog and Digital Circuits | 2.1 | _ | 3.6 | V | _ | | Supply Voltage for Digital I/O | 2.1 | _ | 3.6 | V | _ | | Input High Voltage (VIH) | 0.5 * VIN | _ | VIN + 0.3 | V | _ | | Input Low Voltage (VIL) | -0.3V | _ | 0.2 * VIN | V | _ | | AC Peak Voltage on Open Collector Outputs (IO) ⁽¹⁾ | VIN - 1.5 | _ | VIN + 1.5 | V | _ | **Note 1:** At minimum, VIN – 1.5V should not be lower than 1.8V. TABLE 4-2: CURRENT CONSUMPTION | Symbol | Chip Mode | Min | Тур | Max | Unit | Condition | |--------|-----------------------|-----|----------|----------|----------|--| | IDDSL | Sleep | _ | 0.1 | 2 | μΑ | Sleep clock disabled, all blocks
disabled | | IDDST | Idle | _ | 65 | 80 | μΑ | Oscillator and baseband enabled | | IDDFS | Frequency Synthesizer | _ | 1.3 | 1.7 | mA | Frequency synthesizer running | | IDDTX | Tx | | 25
16 | 30
21 | mA
mA | Output power = +10 dBm
Output power = +1 dBm ⁽¹⁾ | | IDDRX | Rx | _ | 3.0 | 3.5 | mA | _ | **Note 1:** Guaranteed by design and characterization. TABLE 4-3: DIGITAL I/O PIN INPUT SPECIFICATIONS(1) | Symbol | Characteristic | Min | Тур | Max | Unit | Condition | |--------|--|-----------|-----|-----------|------|----------------------| | VIL | Input Low Voltage | _ | _ | 0.2 * VIN | V | _ | | VIH | Input High Voltage | 0.8 * VIN | _ | _ | V | _ | | lıL | Input Low Leakage Current ⁽²⁾ | -0.5 | _ | 0.5 | μΑ | VIL = 0V | | Іін | Input High Leakage Current | -0.5 | _ | 0.5 | μA | VIH = VIN, VIN = 3.7 | | Vol | Digital Low Output Voltage | _ | _ | 0.1 * VIN | _ | IoL = 1 mA | | Vон | Digital Low Output | 0.9 * VIN | _ | | V | Iон = -1 mA | **Note 1:** Measurement Conditions: TA = 25°C, VIN = 3.3V, Crystal Frequency = 12.8 MHz, unless otherwise specified. ^{2:} Negative current is defined as the current sourced by the pin. TABLE 4-4: PLL PARAMETERS AC CHARACTERISTICS(1) | Symbol | Parameter | Min | Тур | Max | Unit | Condition | |--------|--|------|------|-----|------|--------------------------------------| | FRO | Frequency Ranges | 863 | _ | 870 | MHz | | | BRFSK | Bit Rate (FSK) | 1.56 | _ | 40 | kbps | NRZ | | BROOK | Bit Rate (OOK) | 1.56 | _ | 16 | kbps | NRZ | | FDFSK | Frequency Deviation (FSK) | 33 | 50 | 200 | kHz | _ | | FXTAL | Crystal Oscillator Frequency | 9 | 12.8 | _ | MHz | _ | | FSSTP | Frequency Synthesizer Step | _ | 2 | _ | kHz | Variable, depending on the frequency | | TSOSC | Oscillator Wake-up Time | _ | 1.5 | 5 | ms | From Sleep mode ⁽¹⁾ | | TSFS | Frequency Synthesizer
Wake-up Time; at most,
10 kHz away from the target | _ | 500 | 800 | μs | From Stand-by mode | | TSHOP | Frequency Synthesizer Hop | _ | 180 | _ | μs | 200 kHz step | | | Time; at most, 10 kHz away | _ | 200 | _ | μs | 1 MHz step | | | from the target | _ | 250 | _ | μs | 5 MHz step | | | | _ | 260 | _ | μs | 7 MHz step | | | | _ | 290 | _ | μs | 12 MHz step | | | | _ | 320 | _ | μs | 20 MHz step | | | | _ | 340 | _ | μs | 27 MHz step | Note 1: Guaranteed by design and characterization. TABLE 4-5: RECEIVER AC CHARACTERISTICS⁽¹⁾ | Symbol | Parameter | Min | Тур | Max | Unit | Condition | |--------|--|-----|------|--------------------|------|---| | RSF | Sensitivity (FSK) | _ | -107 | _ | dBm | 869 MHz, BR = 25 kbps, f_{dev} = 50 kHz, f_c = 100 kHz | | | | _ | -103 | _ | dBm | 869 MHz, BR = 66.7 kbps, f_{dev} = 100 kHz, f_c = 200 kHz | | RSO | Sensitivity (OOK) | _ | -113 | _ | dBm | 869 MHz, 2 kbps NRZ $f_c - f_o$ = 50 kHz, f_o = 50 kHz | | | | _ | -106 | _ | dBm | 869 MHz, 16.7 kbps NRZ $f_c - f_o$ = 100 kHz, f_o = 100 kHz | | CCR | Co-Channel Rejection | _ | -12 | _ | dBc | Modulation as wanted signal | | ACR | Adjacent Channel Rejection | _ | 27 | _ | dB | Offset = 300 kHz, unwanted tone is not modulated | | | | _ | 52 | _ | dB | Offset = 600 kHz, unwanted tone is not modulated | | | | _ | 57 | _ | dB | Offset = 1.2 MHz, unwanted tone is not modulated | | BI | Blocking Immunity | _ | -48 | _ | dBm | Offset = 1 MHz, unmodulated | | | | - | -37 | _ | dBm | Offset = 2 MHz, unmodulated, no
SAW | | | | _ | -33 | _ | dBm | Offset = 10 MHz, unmodulated, no SAW | | RXBWF | Receiver Bandwidth in FSK
Mode ⁽²⁾ | 50 | _ | 250 | kHz | Single side BW, Polyphase Off | | RXBWU | Receiver Bandwidth in OOK
Mode ⁽²⁾ | 50 | _ | 400 | kHz | Single side BW, Polyphase On | | ITP3 | Input Third Order Intercept
Point | _ | -28 | _ | dBm | Interferers at 1 MHz and 1.950 MHz offset | | TSRWF | Receiver Wake-up Time | _ | 280 | 500 | μs | From FS to Rx ready | | TSRWS | Receiver Wake-up Time | | 600 | 900 | μs | From Stand-by to Rx ready | | TSRHOP | Receiver Hop Time from Rx | | 400 | _ | μs | 200 kHz step | | | Ready to Rx Ready with a | _ | 400 | _ | μs | 1 MHz step | | | Frequency Hop | _ | 460 | _ | μs | 5 MHz step | | | | _ | 480 | _ | μs | 7 MHz step | | | | | 520 | _ | μs | 12 MHz step | | | | _ | 550 | | μs | 20 MHz step | | | | | 600 | _ | μs | 27 MHz step | | RSSIST | RSSI Sampling Time | | _ | 1/f _{dev} | S | From Rx ready | | RSSTDR | RSSI Dynamic Range | _ | 70 | _ | dB | Ranging from sensitivity | Note 1: Guaranteed by design and characterization. ^{2:} This reflects the whole receiver bandwidth, as described by conditions for active and passive filters. TABLE 4-6: TRANSMITTER AC CHARACTERISTICS⁽¹⁾ | Symbol | Description | Min | Тур | Max | Unit | Condition | | | | | | | | | | | | |--------|-------------------------------|-----|-------|------|--------|--|---|---|-----|-----|---|---|---|---|---|---|---| | RFOP | RF Output Power, Programmable | _ | +12.5 | _ | dBm | Maximum power setting | | | | | | | | | | | | | | with 8 Steps of typ. 3 dB | _ | -8.5 | _ | dBm | Minimum power setting | | | | | | | | | | | | | PN | Phase Noise | _ | -112 | _ | dBc/Hz | Measured with a 600 kHz offset at the transmitter output | | | | | | | | | | | | | TXSP | Transmitted Spurious | | _ | -47 | dBc | At any offset between 200 kHz and 600 kHz, unmodulated carrier, f_{dev} = 50 kHz | | | | | | | | | | | | | Tx2 | Second Harmonic | | | | | No modulation, see Note ⁽²⁾ | | | | | | | | | | | | | Tx3 | Third Harmonic | _ | _ | _ | _ | _ | _ | | -40 | dBm | | | | | | | | | Tx4 | Fourth Harmonic | | | | | | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Txn | Harmonics above Tx4 | | | | | | | | | | | | | | | | | | FSKDEV | FSK Deviation | ±33 | ±55 | ±200 | kHz | Programmable | | | | | | | | | | | | | TSTWF | Transmitter Wake-up Time | _ | 120 | 500 | μs | From FS to Tx ready | | | | | | | | | | | | | TSTWS | Transmitter Wake-up Time | _ | 600 | 900 | μs | From Stand-by to Tx ready | | | | | | | | | | | | Note 1: Guaranteed by design and characterization. ^{2:} Transmitter in-circuit performance with SAW filter and crystal. #### 4.1 Timing Specification and Diagram TABLE 4-7: SPI TIMING SPECIFICATION^(1,2) | Parameter | Min | Тур | Max | Unit | Condition | |---|-----|-----|-----|------|-----------| | SPI Configure Clock Frequency | _ | _ | 6 | MHz | _ | | SPI Data Clock Frequency | _ | _ | 1 | MHz | _ | | Data Hold and Setup Time | 2 | _ | _ | μs | _ | | SDI Setup Time for SPI Configure | 250 | _ | _ | ns | _ | | SDI Setup Time for SPI Data | 312 | _ | _ | ns | _ | | CSCON Low to SCK Rising Edge;
SCK Falling Edge to CSCON High | 500 | _ | _ | ns | _ | | CSDATA Low to SCK Rising Edge;
SCK Falling Edge to CSDATA High | 625 | _ | _ | ns | _ | | CSCON Rising to Falling Edge | 500 | _ | _ | ns | _ | | CSDATA Rising to Falling Edge | 625 | _ | _ | ns | _ | **Note 1:** Typical Values: TA = 25°C, VIN = 3.3V, Crystal Frequency = 12.8 MHz, unless otherwise specified. ^{2:} Negative current is defined as the current sourced by the pin. #### APPENDIX A: REVISION HISTORY Revision B (April 2021) Updated Section 3.1 "Europe" **Revision A (October 2010)** This is the Initial release of the document NOTES: #### PRODUCT IDENTIFICATION SYSTEM To order or obtain information, for example, on pricing or delivery, refer to the factory or the listed sales office. #### Worldwide Sales and Service #### **AMERICAS** Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com **Atlanta** Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Austin, TX** Tel: 512-257-3370 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 **Detroit** Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 **Raleigh, NC** Tel: 919-844-7510 New York, NY Tel: 631-435-6000 **San Jose, CA** Tel: 408-735-9110 Tel: 408-436-4270 **Canada - Toronto** Tel: 905-695-1980 Fax: 905-695-2078 #### ASIA/PACIFIC Australia - Sydney Tel: 61-2-9868-6733 **China - Beijing** Tel: 86-10-8569-7000 China - Chengdu Tel: 86-28-8665-5511 **China - Chongqing** Tel: 86-23-8980-9588 **China - Dongguan** Tel: 86-769-8702-9880 **China - Guangzhou** Tel: 86-20-8755-8029 China - Hangzhou Tel: 86-571-8792-8115 China - Hong Kong SAR Tel: 852-2943-5100 **China - Nanjing** Tel: 86-25-8473-2460 China - Qingdao Tel: 86-532-8502-7355 **China - Shanghai** Tel: 86-21-3326-8000 **China - Shenyang** Tel: 86-24-2334-2829 **China - Shenzhen** Tel: 86-755-8864-2200 China - Suzhou Tel: 86-186-6233-1526 China - Wuhan Tel: 86-27-5980-5300 China - Xian Tel: 86-29-8833-7252 **China - Xiamen** Tel: 86-592-2388138 **China - Zhuhai** Tel: 86-756-3210040 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-3090-4444 India - New Delhi Tel: 91-11-4160-8631 India - Pune Tel: 91-20-4121-0141 **Japan - Osaka** Tel: 81-6-6152-7160 **Japan - Tokyo** Tel: 81-3-6880- 3770 Korea - Daegu Tel: 82-53-744-4301 **Korea - Seoul** Tel: 82-2-554-7200 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 Malaysia - Penang Tel: 60-4-227-8870 Philippines - Manila Tel: 63-2-634-9065 Singapore Tel: 65-6334-8870 Taiwan - Hsin Chu Tel: 886-3-577-8366 Taiwan - Kaohsiung Tel: 886-7-213-7830 **Taiwan - Taipei** Tel: 886-2-2508-8600 Thailand - Bangkok Tel: 66-2-694-1351 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-72400 Germany - Karlsruhe Tel: 49-721-625370 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Germany - Rosenheim Tel: 49-8031-354-560 Israel - Ra'anana Tel: 972-9-744-7705 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Padova Tel: 39-049-7625286 **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7288-4388 **Poland - Warsaw** Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 **Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **Sweden - Gothenberg** Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 **UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820